

Phase II Environmental Site Assessment and Building Materials Inspection
Samaritan House Property - Kalispell, Montana
Prepared for the City of Kalispell
12.19.2022

Project Number: 22-05-12

1111 East Broadway, Missoula, MT 59802 I OFFICE 406.728.4611 I EMAIL wgm@wgmgroup.com

REPORT DATE:

12.19.2022 Version 1

AUTHOR:

Tyler Etzel Senior Geologist

CONTENTS

1.0 INTRODUCTION	1
1.1 PURPOSE	
1.2 BACKGROUND & SITE DESCRIPTION	
1.3 GEOLOGY & HYDROLOGY	
2.0 SITE INVESTIGATION	4
2.1 UPDATED CONCEPTUAL SITE MODEL	4
2.2 DATA QUALITY OBJECTIVES	4
2.3 SUBSURFACE SOIL SAMPLE COLLECTION	5
2.4 ASBESTOS SAMPLING	6
2.5 LEAD-BASED PAINT INSPECTION	6
2.6 LEAD DUST ASSESSMENT	7
2.7 DECONTAMINATION & INVESTIGATION-DERIVED WASTE	7
2.8 SAMPLE SHIPMENT	
2.9 FIELD AND LABORATORY QUALITY CONTROL SAMPLES	8
3.0 INVESTIGATION RESULTS	10
3.1 SB-1 RESULTS	10
3.2 SB-2 RESULTS	11
3.3 SB-3 RESULTS	11
3.4 ASBESTOS SAMPLING RESULTS	12
3.5 LEAD-BASED PAINT RESULTS	
3.5 PCB (LIGHT BALLAST) RESULTS	
3.5 MERCURY THERMOSTAT RESULTS	
3.6 LEAD DUST ASSESSMENT RESULTS	
3.7 DATA VALIDATION	
3.8 DEVIATIONS FROM THE SAP	
4.0 DISCUSSION/ RECOMMENDATIONS	17
4.1 PETROLEUM HYDROCARBONS & VOLATILE ORGANIC COMPOUNDS IN SOIL	17
4.2 RCRA METALS IN SOIL	17
4.3 ASBESTOS IN BUILDING MATERIALS	18
4.4 LEAD BASED PAINT IN BUILDING MATERIALS	19
4.5 LEAD DUST	20
4.6 PCBS & MERCURY IN BUILDING MATERIALS	21
5.0 LIMITATIONS AND RELIANCE	22
6.0 REFERENCES	23

FIGURES

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE MAP
- FIGURE 3 SITE PLAN
- FIGURE 4 NORTH MAIN BUILDING ASBESTOS SAMPLE LOCATIONS
- FIGURE 5 SOUTH MAIN BUILDING ASBESTOS SAMPLE LOCATIONS
- FIGURE 6 MAINTENANCE GARAGE ASBESTOS SAMPLE LOCATIONS
- FIGURE 7 NORTH MAIN BUILDING XRF LOCATIONS
- FIGURE 8 SOUTH MAIN BUILDING XRF LOCATIONS
- FIGURE 9 MAINTENANCE GARAGE XRF LOCATIONS
- FIGURE 10 LEAD DUST SAMPLE LOCATIONS

APPENDICES

- A BORING LOGS WELL LOGS
- **B FIELD DOCUMENTATION**
- **C ANALYTICAL LABORATORY REPORTS**
- **D TABULATED DATA**
- **E DATA VALIDATION**

1.0 INTRODUCTION

WGM Group, Inc. (WGM) performed a Phase II Environmental Site Assessment (Phase II ESA) and Building Materials Inspection (BMI) of the Samaritan House, property (Site) located at 1110 2nd Street West in Kalispell, Montana (Figures 1 and 2). The Phase II ESA was completed for the City of Kalispell (the City) using a grant from the U.S. Environmental Protection Agency (EPA) Brownfields Program. The ESA was conducted in accordance with the Sampling and Analysis Plan (SAP) prepared by WGM, which was approved by the EPA on September 7, 2022 (WGM, 2022a).

1.1 PURPOSE

A Phase I ESA conducted at the Site by EarthTech Environmental identified three Recognized Environmental Conditions (RECs) for the Site and noted that hazardous building materials may be present at the Site (EarthTech, 2021). The key findings include:

- The presence of an abandoned concrete grease pit located in the maintenance shop building that may have released petroleum products or solvents which could have impacted soils under the grease pit.
- The historical use of an oil-sand interceptor (OSI) located south of the automotive wash rack may have released petroleum products or solvents into the underlying soil.
- The presence of lead dust inside and outside the north main building due to the historical use of the Site as an Armory (Sonstelie Hall, U.S. Army Reserve Center), including use of an indoor shooting range inside the north main building on Site.
- Although not a REC per ASTM E 1527-13, the Phase I ESA (EarthTech, 2021) identified potential asbestos-containing material (ACM), lead-based paint (LBP), and other hazardous building materials associated in on-site structures.

This Phase II ESA was conducted to determine if there was a historical release of contaminants from the abandoned concrete grease pit and/or OSI; if lead dust from historical use of the shooting range is present in the north main building and associated areas; and to assess whether hazardous building materials are present at the Site at concentrations requiring special handling or disposal for renovation and/or deconstruction of the onsite buildings. Results of the soil investigation were used to determine whether or not environmental impacts associated with the RECs represent encumbrances that could impact future use and development of the Site. Analytical results obtained through laboratory analysis of soil samples

collected during the Phase II ESA were compared to appropriate EPA and Montana Department of Environmental Quality (DEQ) soil screening levels to evaluate possible impacts. All data was generated in accordance with requirements described in the Programmatic Quality Assurance Project Plan (PQAPP) developed for the City of Kalispell Brownfields Program (Weston, 2018).

1.2 BACKGROUND & SITE DESCRIPTION

The Site is improved with three main buildings and is currently being used as administrative offices by Samaritan House, which is a homeless shelter and transitional living program. Prior to this, the Site was used as an armory by the U.S. Army Reserve. The main structure is a large building constructed in two sections ("north main building" and "south main building") with a connecting hall between them. This structure, which is constructed of cement blocks, covers approximately 14,325 square feet. The Phase I ESA indicated this building was constructed in 1953. The maintenance shop building on the Site, which is also built of cement blocks, covers approximately 350 square feet and the Phase I ESA indicated this building was constructed in 1978. A partially enclosed automotive truck wash (wash rack) is located between the north main building and the maintenance shop. A small oil storage shed is located adjacent east of the maintenance shop building and has a concrete curb for spill containment. The lot is approximately 2.4 acres in size and is located in a mixed commercial/residential area in the western part of the city of Kalispell. The general vicinity includes residences, a school, and various commercial businesses clustered along South Meridian Road and Center Street.

1.3 GEOLOGY & HYDROLOGY

The Flathead valley is bounded on the east by the Swan-Whitefish fault, located along the base of the Swan Range, and on the west by the Kalispell fault at the base of the Salish Mountains. The mountains rise about 4,500 feet above the valley floor, with Miocene and Oligocene sediments resting on Precambrian bedrock. Pleistocene continental and mountain glaciation advanced southward through the trench in the vicinity of Kalispell depositing a layer of glacial till. As the glaciers receded, meltwater lakes pooled in areas where drainage was impeded, leaving lakebed deposits. In contrast, fluvial outwash deposits accumulated where discharge flowed unrestricted. It is estimated that 600 to 1,000 feet of Wisconsin-age Pleistocene glacial deposits overlie the Tertiary sediments (Smith, 2000).

Two primary aquifers in the Kalispell area include the shallow alluvial aquifer and the deep artesian aquifer. The shallow alluvial aquifer is composed of unconsolidated fluvial sediments (i.e., sand and gravel) deposited along the floodplain of the Flathead, Whitefish, and Stillwater Rivers. The aquifer

thickness ranges from 20 to 100 feet. Low permeability glacial till and lakebed deposits of various thicknesses separate the shallow aquifer from the deep artesian aquifer. The deep artesian aquifer consists of a series of intercalated sand and gravel layers, with fine-grained interbeds. These deposits probably represent the paleo-channel of the Flathead River (LaFave, 2003). Groundwater flow direction near the Site in the shallow aquifer is south-southeast and likely parallels the Ashley Creek located 0.25 miles southwest of the Site. Depth to groundwater (shallow aquifer) in the vicinity of the Site is assumed to fluctuate between 8 to 16 feet below ground surface (ft bgs). The estimated groundwater flow direction in the vicinity of the Site is south-southwest towards the Flathead River.

2.0 SITE INVESTIGATION

2.1 UPDATED CONCEPTUAL SITE MODEL

The conceptual site model (CSM) has been updated based on the onsite investigative data collected for this Report of Findings (ROF). Critical elements of the updated CSM include:

- Near-surface lithology is characterized by non-native gravel fill material from 4 to 5 ft bgs.
- Native lithology (predominantly clay with lesser amounts of silts and gravels) was encountered from approximately 4 to 8 ft bgs, which is the maximum depth of investigation.
- Contamination related to a release in the abandoned grease pit located in the maintenance shop or the OSI west of the wash rack would have been observed during investigation of soil in these areas and no visual or olfactory evidence of petroleum impacts was observed in any soil collected from soil borings advanced in these areas during the investigation.
- No groundwater or perched groundwater was observed in the soil borings.
- The lead dust assessment identified the presence of lead dust on the Site.
- Surface soil sampling showed no residual lead impacts from roof runoff.
- The BMI identified the presence of ACM and LBP on the Site.

2.2 DATA QUALITY OBJECTIVES

The contaminants of concern (COCs) for the Site include volatile petroleum hydrocarbons (VPH), extractable petroleum hydrocarbons (EPH), volatile organic compounds (VOCs), Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, selenium, silver, and mercury) and lead dust resulting from the army reserve indoor shooting range. COCs for hazardous building materials include suspect ACM, LBP, polychlorinated biphenyls (PCBs) in fluorescent light fixtures, and mercury-containing ampules in thermostats. Prior to conducting this Phase II ESA, data gaps concerning impacts to soil were as follows:

- Lack of COC data in surface and subsurface soil at the Site;
- Lack of COC data concerning the presence/absence of ACM, LBP, and other hazardous building materials in buildings; and
- Lack of COC data concerning the presence of lead dust in the north main building and associated areas.

The specific activities completed during this ESA to address these data gaps were as follows:

- The RECs identified by the Phase I ESA were investigated by advancing three direct-push borings (SB-1, SB-2, and SB-3) at the locations shown on Figure 3 to determine if COCs were released to environmental media. Samples of soil were obtained from these borings and analyzed for VPH, EPH, VOCs, and RCRA 8 metals.
- A BMI was performed on all three buildings of the Site to determine whether ACM, LBP, and/or other hazardous building materials are present.
- A lead dust assessment was performed on the north main building and associated outside areas to determine concentrations of lead in dust.

2.3 SUBSURFACE SOIL SAMPLE COLLECTION

On October 4, 2022, WGM provided technical oversight during advancement of three soil borings using hydraulic percussive direct-push drilling techniques. The borings were completed by Water & Environmental Technologies (WET) of Butte, Montana. Boring locations, shown on Figure 3, were selected to investigate the RECs identified in the Phase I ESA. Soil borings were advanced to total depths of 8 ft bgs. Boring logs are provided in **Appendix A**.

WGM collected two soil samples from each boring and described the conditions in each of the boreholes on individual boring log forms. A total of six subsurface soil samples were collected from direct-push macrocores and field-screened with a calibrated photoionization detector (PID) in accordance with the SAP (WGM, 2022a). Six samples were submitted for laboratory analysis; two from each soil boring, one from 1 to 2 feet below the base of the concrete slab and one from the deepest extent of the borehole at 6 to 8 ft bgs. **Table 1** shows the sample collection depths, sample identification convention, and PID headspace readings for each sample.

TABLE 1 - SOIL SAMPLE COLLECTION AND IDENTIFICATION

BORING	SAMPLE ID	SAMPLE DEPTH (FT BGS)	HEADSPACE CONCENTRATION (PPM)	ANALYTICAL PARAMETERS
SB-1	220512-SB1-1	2 – 4	1.3	
	220512-SB1-2	6 – 8	0.9	EPH Screen, VPH, VOCs, RCRA Metals
SB-2	220512-SB2-1	2 – 4	1.7	
	220512-SB2-2	6 – 8	1.5	
SB-3	220512-SB3-1	2 – 4	0.1	
	220512-SB3-2	6 – 8	1.7	

Notes: ft bgs - feet below ground surface

ppm – parts per million ns - no sample collected

Soil samples were submitted to Energy Laboratories in Helena, Montana for analysis of the COCs (EPH Screen, VPH, VOCs, and RCRA metals). Investigation results are discussed in Section 3.0. The field notes are included in Appendix B. Laboratory analytical results are included in Appendix C.

2.4 ASBESTOS SAMPLING

The Site has three buildings; the main building, the maintenance shop, and the attached oil storage shed (Figure 2). WGM sampled suspected ACM from the three buildings on October 4th and 5th, 2022. A total of 44 individual building materials were identified and 110 samples were collected and submitted to Quest MicroAnalytics in Dallas, Texas under chain-of-custody documentation for analysis of asbestos by Polarized Light Microscopy/Dispersion Staining (PLM/DS) test method 40 CFR Part 763, Appendix E to Subpart E. Investigation results are discussed in Section 3.0. Laboratory analytical results are included in Appendix C.

2.5 LEAD-BASED PAINT INSPECTION

LBP building inspections were performed on the maintenance shop, oil storage shed, and main building from October 4th through the 6th, 2022, by Brent Merritt with WGM. The interior and exterior painted surfaces were inspected using an X-Ray Fluorescence (XRF) spectrometer (Viken Detection Pb200i). A total of 17 building components were identified and 107 building material paints were analyzed for lead content. The locations, components, substrates, and colors of paint assayed for LBP were recorded in a field XRF Data Log Sheet (Appendix B). Investigation results are discussed in Section 3.0. Laboratory analytical results are included in **Appendix C**.

2.6 LEAD DUST ASSESSMENT

A lead dust assessment of the north main building and associated outside areas was conducted on October 6, 2022, by Brent Merritt with WGM. Settled lead dust sampling was conducted using the wipe sampling method and a total of 28 lead dust wipe samples were collected from the north main building. For wide, flat locations, a 12-inch square template-assisted sampling procedure was used. The surface inside the template was wiped with a laboratory-provided lead dust wipe. The area was wiped using firm pressure with 3 to 4 vertical S-strokes. Then the wipe was folded with the exposed side of the pad and the area was wiped with 3 to 4 horizontal S-strokes. The pad was folded once more and the area was wiped with 3 to 4 additional vertical S-strokes, then the pad was folded, exposed side in, and placed into a pre-labeled plastic bag. Only one template was used for each sample. For small and/or other locations, (for example, a windowsill, or door jamb), tape was used to delineate the sampling area as described in ASTM E 1728/E 1728M-20.

Dimensions of sampling areas and specific locations were recorded in Lead Dust Wipe Sampling Field Forms (Appendix B). All dust-wipe samples were sampled for lead content according to ASTM Standard Practice for Collection of Settled Dust Samples Using Wipe Sampling Methods for Subsequent Lead Determination (ASTM E 1728/E 1728M-20); ASTM Standard Specification for Wipe Sampling Materials for Lead in Surface Dust (ASTM E 1792-20) and U.S. Department of Housing and Urban Development Guidelines (HUD, 2012). All lead dust wipe samples were submitted to Energy Laboratories in Helena, Montana for analysis performed by the methods identified in the SAP (WGM, 2022a). Investigation results are discussed in Section 3.0. Laboratory analytical results are included in Appendix C.

2.7 DECONTAMINATION & INVESTIGATION-DERIVED **WASTE**

To avoid cross-contamination between borings and sampling intervals, all downhole sampling equipment was decontaminated onsite between drilling of individual borings using distilled water, phosphate-free soap, 25% methanol tap-water solution, 10% nitric acid solution, and a final distilled water rinse. Decontamination procedures were conducted at a designated decontamination area on the Site. Investigation-derived wastes (decontamination wash water) was handled in accordance with the SAP (WGM, 2022a). Because direct-push drilling techniques were used, there were no residual soil cuttings from the investigation. All sampling equipment was decontaminated between each sampling interval following WGM's standard operation procedure that includes the following protocol:

- Clean with tap water and a non-phosphate laboratory detergent, using a brush to remove particulate matter and surface film
- Triple rinse with tap water
- Single rinse with 25 percent methanol-tap water blend
- Single rinse with 10 percent dilute nitric acid-tap water blend
- Triple rinse with tap water
- Triple rinse with deionized water

All building materials and lead dust sampling equipment was conducted with one-time use disposable equipment.

2.8 SAMPLE SHIPMENT

The soil samples and lead dust wipe samples identified in Sections 2.3 and 2.6 were containerized and placed into a shipping cooler with ice. The samples were shipped to Energy Labs in Helena, Montana, under chain-of-custody documentation on October 5th and 6th, 2022. The asbestos samples identified in Section 2.4 were placed into a shipping container and shipped to Quest MicroAnalytics in Dallas, Texas under chain-of-custody documentation on October 12th, 2022.

2.9 FIELD AND LABORATORY QUALITY CONTROL **SAMPLES**

WGM followed the EPA-approved PQAPP (Weston, 2018), which establishes specific quality assurance and quality control (QA/QC) policies and activities. The PQAPP references standard EPA laboratory methods, which specify equipment requirements. New commercially available supplies and consumables from standard sources (i.e., hardware stores) were used for this Phase II ESA. The following field QA/QC samples were collected (or explanations are provided in cases where samples were not collected):

- At the end of each day of fieldwork, one equipment rinseate blank (ERB) sample was collected for soil analytes by running distilled water over the decontaminated field equipment used during the fieldwork. The ERB sample was submitted blind to the laboratory, and results from the ERB sample is used to verify the effectiveness of equipment decontamination procedures.
- One field duplicate (DUP) soil sample was collected during the Phase II ESA. The field replicate was collected as a split of a randomly selected sample and submitted blind to the laboratory.

- A laboratory-provided trip blank (TB) sample accompanied each cooler and was used to verify whether cross-contamination had been introduced during the sample container shipping process.
- Lead Dust field blanks were collected at a minimum frequency of 5% (one for every 20 field wipe samples collected). These "field blanks" were submitted to the laboratory "blind" with identification numbers similar to the collected dust wipe samples.
- The ERB and DUP samples were analyzed for COCs including VPH, VOCs, EPH, and RCRA Metals. The TB samples were analyzed for VPH and VOCs. The field blank samples were analyzed for lead.
- Duplicate samples of asbestos were not collected during the BMI because several samples were collected from each suspect ACM.
- No ERB samples of equipment used to collect building material were collected because disposable equipment was used.

3.0 INVESTIGATION RESULTS

WGM compared subsurface soil data to relevant screening levels to determine if soil would require additional investigation or response actions consistent with anticipated land uses. Detected concentrations were compared to the following regulatory screening or action levels:

- Background concentrations of Inorganic Constituents in Surface Soil (DEQ, 2013)
- DEQ Surface/Subsurface Soil Screening Levels as determined via the DEQ Surface/Subsurface Soil Screening Flowchart Part 1 – Direct Contact. This process was used in conjunction with the most current applicable DEQ and EPA screening level sources (DEQ, 2021a)
- DEQ Surface/Subsurface Soil Screening Levels as determined via the DEQ Surface/Subsurface Soil Screening Flowchart Part 2 – Leaching to Groundwater. This process was used in conjunction with the most current applicable DEQ and EPA screening level sources (DEQ, 2021b)

Soil analytical laboratory reports are included in Appendix C and results are tabulated along with screening levels in **Appendix D**. Results of sampling for the investigation are discussed below.

3.1 SB-1 RESULTS

Soil boring SB-1, located at the southwest end of the abandoned concrete grease pit, was advanced to a total depth of 8 ft bgs. No evidence of impacted soil (petroleum staining or odor) was observed in the macrocores or soil samples (SB1-1 and SB1-2) collected from SB-1. No PID headspace readings were elevated in any of the soil samples. Soil samples were submitted from two intervals (2 to 4 ft bgs and 6 to 8 ft bgs) for laboratory analysis of COCs. Results are summarized as follows:

- Concentrations of EPH in were significantly below DEQ Risk-Based Screening Levels (RBSLs).
- Concentrations of VPH were below laboratory detection levels (not detected).
- Concentrations of VOCs were below laboratory detection levels (not detected).
- RCRA metals were detected, but all concentrations were below soil Screening Levels as determined via the DEQ Surface/Subsurface Soil Screening Flowcharts Part 1 and Part 2.

3.2 SB-2 RESULTS

Soil boring SB-2, located at the northeast end of the abandoned concrete grease pit, was advanced to a total depth of 8 ft bgs. No evidence of impacted soil (petroleum staining or odor) was observed in the macrocores or soil samples (SB2-1 and SB2-2) collected from SB-2. No PID headspace readings were elevated in any of the soil samples. Soil samples were submitted from two intervals (2 to 4 ft bgs and 6 to 8 ft bgs) for laboratory analysis of COCs. Results are summarized as follows:

- Concentrations of EPH in were significantly below DEQ RBSLs.
- Concentrations of VPH were below laboratory detection levels (not detected).
- Concentrations of VOCs were below laboratory detection levels (not detected).
- RCRA metals were detected, and all concentrations were below soil Screening Levels as determined via the DEQ Surface/Subsurface Soil Screening Flowcharts Part 1 and Part 2.

3.3 SB-3 RESULTS

Soil boring SB-3, located at the southeast corner of the wash rack area, was advanced to a total depth of 8 ft bgs. No evidence of impacted soil (petroleum staining or odor) was observed in the macrocores or soil samples (SB3-1 and SB3-2) collected from SB-3. No PID headspace readings were elevated in any of the soil samples. Soil samples were submitted from two intervals (2 to 4 ft bgs and 6 to 8 ft bgs) for laboratory analysis of COCs. Results are summarized as follows:

- EPH was detected in Sample SB3-1 (2 to 4 ft bgs) at a concentration of 826 mg/kg, which exceeds the DEQ RBCA screening level (200 mg/kg) used to determine whether EPH fractions should be analyzed. The EPH fractions analysis for SB3-1 showed no concentrations above DEQ RBSLs. Concentrations of EPH in SB3-2 (6 to 8 ft bgs) were below DEQ RBSLs.
- Concentrations of VPH were below laboratory detection levels (not detected).
- Concentrations of VOCs were below laboratory detection levels (not detected).
- RCRA metals were detected in Sample SB3-1 (2 to 4 ft bgs), and all concentrations were below soil Screening Levels as determined via the DEQ Surface/Subsurface Soil Screening Flowcharts Part 1 and Part 2. RCRA metals were also detected in Sample SB3-2 (6 to 8 ft bgs) and all concentrations were below Screening Levels as determined via the DEQ Surface/Subsurface Soil Screening Flowcharts Part 1 and Part 2 except for barium. Barium was detected at 582 mg/kg, which exceeds the Montana background threshold value of 429 mg/kg and the DEQ leaching to

groundwater screening level of 421 mg/kg, but not the EPA residential direct contact screening level of 1,500 mg/kg.

3.4 ASBESTOS SAMPLING RESULTS

The asbestos inspection was performed on October 4th and 5th, 2022, by Brent Merritt, a Montanaaccredited asbestos inspector per license #MTA-4362. The inspector assessed the north and south portions of the main building (14,325 ft²) and the maintenance garage (350 ft²). In accordance with SAP specifications and consistent with EPA and DEQ Asbestos Control Program (ACP) sampling guidelines, a total of 110 bulk samples were collected from suspect ACM (DEQ, 2019):

- 52 suspect ACM samples were collected from the north main building (Figure 4)
- 31 suspect ACM samples were collected from the south main building (Figure 5)
- 27 suspect ACM samples were collected from the maintenance garage (**Figure 6**)

Building materials are considered ACM if they contain greater than 1% asbestos, as defined in the asbestos National Emissions Standards for Hazardous Air Pollutants (NESHAP) under 40 CFR Part 61, Subpart M. Results of laboratory analysis for asbestos samples are summarized below. The complete asbestos laboratory report is included in **Appendix C**.

NORTH MAIN BUILDING

None of the 52 samples collected and analyzed from the north main building detected asbestos.

SOUTH MAIN BUILDING

Six of the 31 samples (SWI-FT1A, SWI-FT1-B, SWI-FT1-C, SWI-FT2-A, SWI-FT2-B, SWI-FT2-C) contained 5% Chrysotile asbestos and are considered ACM. The building materials that contained 5% Chrysotile asbestos were all floor tiles and included:

- 12"x12" White Floor Tile with Gray Swipe Pattern (A) and Black Mastic (B), Corridor North
- 12"x12" White Floor Tile with Gray Swipe Pattern (A) and Black Mastic (B), Corridor West
- 12"x12" White Floor Tile with Gray Swipe Pattern (A) and Black Mastic (B), Admin #1
- 12"x12" Orange Floor Tile (A) with Black Mastic (B), Unit Advisor Room
- 12"x12" Orange Floor Tile (A) with Black Mastic (B), Corridor

12"x12" Orange Floor Tile (A) with Black Mastic (B), Corridor

MAINTENANCE GARAGE

Six of the 27 samples (GAR-DC1-A, GAR-DC1-B, GAR-DC1-C, GARGL1-A, GARGL1-B, GAR-GL1-C) contained 3% Chrysotile asbestos and are considered ACM. The building materials that contained 3% Chrysotile asbestos were all door caulking and window glazing and included:

- White Door Caulking, Exterior of Main Door
- White Door Caulking, Exterior of Main Door
- White Door Caulking, Exterior of Bathroom Door
- Gray Window Glazing, Exterior South Side, East Window
- Gray Window Glazing, Exterior South Side, East Window
- Gray Window Glazing, Exterior South Side, West Window

3.5 LEAD-BASED PAINT RESULTS

The LBP inspection was performed by Brent Merritt on October 4th through the 6th, 2022. A total of 45 locations were assessed using the XRF spectrometer in the north main building, 26 in the south main building, and 36 in the maintenance garage. A total of 17 building components were identified and 107 building material paints were assessed for lead content (Figures 7, 8, and 9). XRF measurements classify paint as lead-based when the lead concentration is equal to or greater than 1.0 mg/cm². Results of the LBP inspection are summarized below. The LBP XRF survey locations are described in the XRF Data Log Sheet included in Appendix B.

NORTH MAIN BUILDING

None of the 45 locations exhibited XRF readings that would classify the paint as LBP.

SOUTH MAIN BUILDING

None of the 26 locations exhibited XRF readings that would classify the paint as LBP.

MAINTENANCE GARAGE

Seven of the 36 locations in the maintenance garage (see Figure 9) exhibited XRF readings that classify the paint as LBP. The locations include:

- Metal Garage Entrance Protection, garage west side, faded black color 1.5 mg/cm2
- Metal Garage Entrance Protection, garage west side, faded yellow color 1.2 mg/cm2
- Metal Bottom Slat Garage Door (interior), black color 1.4 mg/cm2
- Metal Bottom Slat Garage Door (interior), yellow color 2.2 mg/cm2
- Metal Pipe, south side HVAC (interior), yellow color 1.1 mg/cm2
- Metal Roof Support on Ceiling, tan color (orange paint underneath) 12.2 mg/cm2
- Metal Roof Support on Ceiling, tan color (orange paint underneath) 9.8 mg/cm2

3.6 PCB (LIGHT BALLAST) RESULTS

The inspector assessed the north main building, the south main building, and the maintenance garage and identified PCB-containing ballasts and fluorescent tubes throughout the buildings.

3.7 MERCURY THERMOSTAT RESULTS

Vintage metal thermostats that may contain mercury glass ampules were found the north and south main buildings.

3.8 LEAD DUST ASSESSMENT RESULTS

The lead dust assessment was conducted on October 6, 2022, by Brent Merritt with WGM. A total of 28 wipe samples were collected from the north main building and submitted to Energy Laboratories for EPA Method SW6020 total lead (Figure 10). Laboratory results detected lead in eight of the 28 samples submitted for analysis. The detected concentrations of each sample were compared to EPA Dust-Lead Clearance Levels (DLCLs) of 10 micrograms per square foot (µg/ft² or µg/wipe) for floors and 100 µg/ft² for windowsills. These results are summarized below with details including sample ID, location, surface material, and concentration detected.

- LD-4, Assembly Hall Shooting Range Entrance, floor tile 11 μg/wipe
- LD-5, Assembly Hall Shooting Range Entrance, floor tile 27 µg/wipe
- LD-6, Middle Assembly Hall Shooting Range, painted concrete floor 11 μg/wipe
- LD-7, West Assembly Hall Shooting Range, painted concrete floor 42 μg/wipe
- LD-8, East Assembly Hall Shooting Range, painted concrete floor 25 µg/wipe
- LD-24, Arms Vault, bare concrete floor 25 µg/wipe

- LD-26, Kitchen Ceramic Floor Tiles (red) 5.5 μg/wipe
- LD-28, Shooting Range Baffle, painted metal 60 μg/wipe

Six of the eight samples that exceeded the DLCL of 10 µg/ft² (for floors) were located in the shooting range and one sample was located in the arms vault room. The sample collected from the Kitchen Ceramic Floor detected lead dust, but at a concentration below the DLCL of 1010 µg/ft² (for floors). The samples that detected lead dust were evaluated per ASTM E 2115-19, Standard Guide for Conducting Lead Hazard Assessment of Dwellings and of Other Child-Occupied Facilities. Table 2 below includes the results of the lead-hazard risk rating.

TABLE 2 – LEAD HAZARD CATEGORIES FOR VARIOUS IDENTIFIED CONDITIONS

Sample ID	Use Pattern Indicates Frequent Contact ¹	Extent-of-Hazard Rating ²	Lead Level Hazard Classification ³	Potential Lead Hazard Risk Category ⁴
LD-4	No	Major	Group B	Moderate
LD-5	No	Major	Group B	Moderate
LD-6	No	Major	Group B	Moderate
LD-7	No	Major	Group B	Moderate
LD-8	No	Major	Group B	Moderate
LD-24	No	Major	Group B	Moderate
LD-26	Yes	Major	Group A	Moderate
LD-28	No	Major	Group C	Moderate

Notes: 1 Use patterns designate areas within the building that are frequently occupied or accessed by persons using the facility.

- 2 A "major" hazard rating is assigned to all hazards associated with lead dust.
- 3 Detected lead content compared to the regulatory action level. Group A indicates the lead content is less than the regulatory action level. Group B indicates lead content is equal to or greater than the action level, but not greater than 5 times the action level. Group C indicates lead content is equal to or greater than 5 times the action level.
- 4 Potential Lead Hazard Risk Category per Table 2 of ASTM E 2115-19, Standard Guide for Conducting Lead Hazard Assessment of Dwellings and of Other Child-Occupied Facilities.

The evaluation in **Table 2** assessed lead hazard risks for the north main building using ASTM E 2115-19 and showed a moderate hazard risk for samples collected in the shooting range, arms vault, and kitchen floor.

3.9 DATA VALIDATION

WGM completed a data usability review and data validation for soil and lead dust in conformance with the EPA-approved PQAPP (Weston, 2018). The reviews and validations are included in **Appendix E**. The review identified minor data validation issues which required qualification of some of the data, but all

data were deemed valid and met the data quality objectives for the site investigation. WGM completed data validation in conformance with the Montana DEQ Data Validation Summary Form (Version 1.3.0, revised 1/26/18). The Data Validation Summary Forms for this investigation are included as **Appendix E**. Specifically, the review identified some minor data validation issues which required "J" qualification (Estimated value - analyte was present but less than the Laboratory Reporting Limit) of some of the analytical data, but all data was deemed valid and met the data quality objectives for the site investigation.

3.10 DEVIATIONS FROM THE SAP

This section discusses deviations from the approved SAP and/or PQAPP. These include:

- The SAP indicated that, the indoor shooting range potentially had widespread lead dust contamination via dispersion through the ventilation system and expelled onto the roof via the ventilation exhaust. The SAP stated that lead dust may have been deposited by the ventilation systems onto the roof and concentrated by roof runoff at the base of downspouts, resulting in soil contamination. WGM determined that the roof of the firing range slopes to the north towards four downspouts that direct rainfall and snowmelt onto a large flat asphalt pavement area next to the wash rack. Additionally, WGM determined that there is a vaulted roof section for the cafeteria that is approximately six feet high adjacent to the exhaust fan area that blocks exhaust fan deposition to the south. Further, WGM determined there was no connectivity for any lead contaminated runoff to impact grassy areas from downspouts on the south side of the building. Because of these observations, no surface soil samples were collected from the downspouts and/or drip lines along the north main building.
- The SAP indicated that heating/cooling/ventilation system deposition locations and the plenum space within the north main building would be sampled for lead dust. A sample from the plenum space above the shooting bench was collected, but the wipe sample was misplaced and was not placed into the sample jar for subsequent laboratory analysis.
- The SAP indicated that if the roof of the building was identified as a ventilation deposition area, the roof would be sampled for lead dust. However, because the composition of the roofing material is a modified bitumen roofing system (asphalt roofing rolls with added sand/silica), collection of lead dust samples using lead dust wipes was not feasible (e.g., attempted collection using the dust wipes would destroy the wipe)

These deviations are considered minor and do not affect the usefulness or usability of the data collected.

4.0 DISCUSSION/ RECOMMENDATIONS

4.1 PETROLEUM HYDROCARBONS & VOLATILE ORGANIC COMPOUNDS IN SOIL

None of the soil samples showed evidence of petroleum hydrocarbon impacts. No samples exhibited a petroleum hydrocarbon odor, and no evidence of volatile petroleum compounds were observed during field screening with the PID. EPH Screen analysis (method SW 8015M) detected TEH in four soil borings, but the concentrations did not exceed the DEQ EPH screening level of 200 mg/kg in three of the four samples. In sample SB3-1, TEH was detected at a concentration of 826 mg/kg, requiring EPH Fractions analysis. No EPH fraction in SB3-1 exceeded any DEQ RBSLs. Appendix C contains the analytical report and Appendix D contains the analytical data in tabulated format along with screening levels used for this investigation.

4.2 RCRA METALS IN SOIL

Sample SB3-2, collected from 6 to 8 ft bgs, detected barium at a concentration of 582 mg/kg. The concentration detected in SB3-2 is above DEQ's background threshold value of 429 mg/kg and above DEQ's Leaching to Groundwater Screening Level of 421 mg/kg. None of the other five soil samples collected during this investigation displayed barium or other RCRA metals concentrations above any regulatory screening level or background level. No other RCRA metals were detected in soil above any screening level.

DEQ considers residential surface soils to be present from 0-2 ft bgs. The soil sample that had a barium exceedance of generic screening was collected from a soil depth of 6-8 ft bgs. At depths of 6-8 ft bgs, DEQ uses a direct contact construction/excavation worker scenario to determine if contaminant concentration exceeds acceptable direct contact risk levels. DEQ's direct contact construction/excavation worker screening level for barium is 14,000 mg/kg. The 582 mg/kg found in the 6-8 foot soil sample is well below the 14,000 mg/kg direct contact construction/excavation worker screening level for barium and therefore there is not a direct contact soil exceedance at this site.

DEQ's generic screening level for barium leaching to groundwater is 421 mg/kg. This generic screening uses a Montana average generic dilution attenuation factor of 10. However, a site-specific dilution attenuation factor calculated would likely be higher than 10 based on the presence of asphalt covering

the area, which would result in a higher site-specific leaching to groundwater screening level. Because of this, the potential for barium at 6 to 8 ft bgs to leach to groundwater is very low. Since no other samples detected barium at elevated levels, the barium concentration appears to be isolated and not indicative of a significant historical or current release. For these reasons, WGM does not believe the detection of barium in soil at 6 to 8 ft bgs precludes the use or redevelopment of the Site.

4.3 ASBESTOS IN BUILDING MATERIALS

In accordance with current EPA and DEQ ACP regulations (DEQ, 2019), building material which contains greater than one percent (>1%) asbestos is placed into one of the three following NESHAP categories:

- 1. Category I non-friable ACM, which includes any asbestos-containing packing, gasket, resilient floor covering, or asphalt roofing product which contains more than one percent (>1%) asbestos
- 2. Category II non-friable ACM, which includes any material, excluding Category I nonfriable ACM, containing more than one percent (>1%) asbestos, that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure such as cement asbestos board, asbestoscement pipe, and window glazing materials;
- 3. Regulated Asbestos-Containing Materials (RACM), which includes friable materials, Category I non-friable ACBM that will or may be subjected to sanding, grinding, cutting, or abrading and Category II non-friable ACBM which has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by forces acting on it or expected to act upon it during the course of renovations and/or demolition activities

A total of 110 total bulk samples from 44 different building materials were sampled for asbestos content. None of the of 52 bulk samples collected from the north main building showed asbestos content greater than 1%. Thirty-one bulk samples were collected from the south main building and six showed asbestos content greater than 1%. Twenty-seven bulk asbestos samples were collected from the maintenance garage and six showed asbestos content greater than 1%. The locations from which the samples were collected that were determined to be ACM are listed below along with their NESHAP category:

SOUTH MAIN BUILDING

Floor tiles in the north section of the hall corridor contained 5% asbestos and are Category I nonfriable ACM

- Floor tiles in the west section of the hall corridor contained 5% asbestos and are Category I nonfriable ACM
- Floor tiles in the Admin #1 room on the north side of the west hall corridor contained 5% asbestos and are Category I non-friable ACM
- Floor tiles in the south section of the hall corridor contained 5% asbestos and are Category I nonfriable ACM
- Floor tiles in the Unit Advisor room on the east side of the south hall corridor contained 5% asbestos and are Category I non-friable ACM

MAINTENANCE GARAGE

- Door caulking on the exterior of the main door contained 3% asbestos and is Category I nonfriable ACM
- Door caulking on the exterior of the bathroom door contained 3% asbestos and is Category I nonfriable ACM
- Exterior glazing of both the east and west windows on the south side of the building contained
 3% asbestos and are Category II non-friable ACM

Future renovation or demolition of the south main building or maintenance garage would be subject to the Occupational Safety and Health Administration (OSHA) Asbestos in Construction Standard 29 CFR 1926.1101, which applies to all construction work where an employee could be occupationally exposed to asbestos. Construction work is defined as work for construction, alteration, and/or repair, including painting and decorating. The presence of Category I non-friable ACM and Category II non-friable ACM in the South Main Building and the Maintenance Garage will require abatement during renovation or demolition of these buildings by an accredited abatement contractor.

4.4 LEAD BASED PAINT IN BUILDING MATERIALS

XRF measurements classify paint as lead-based when the XRF result is equal to or greater than 1.0 mg/cm². A general summary of findings for LBP is presented below. Inspection results are provided in **Appendix B**.

NORTH MAIN BUILDING

LBP was not identified on any surface tested.

SOUTH MAIN BUILDING

• LBP was not identified on any surface tested. All paint was observed to be in good condition

Since no surfaces in the north main building or south main building were identified as positive for LBP, future construction work on these structures will not be subject to the OSHA Toxic and Hazardous Substances: Lead Standard 29 CFR 1910.1025; the general industry standard for occupational exposure to lead. Nor will future renovation be subject to the OSHA Lead in Construction Standard 29 CFR 1926.62, which applies to all construction work where an employee could be occupationally exposed to lead. Construction work is defined as work for construction, alteration and/or repair, including painting and decorating.

MAINTENANCE GARAGE

• LBP was identified on seven of the surfaces tested: both the black and yellow paint on the west side of the garage door; both the black and yellow paint on the bottom slat of the overhead garage door; the yellow paint on the HVAC pipe on the south side of the garage entrance; and the tan paint on the metal roof support. The paint on the west side of the garage entrance was noted to be fading. All other paint was observed to be in good condition.

Due to the identification of LBP in the maintenance garage, renovation activities for the maintenance garage will be subject to the OSHA Toxic and Hazardous Substances: Lead Standard 29 CFR 1910.1025. Future renovation of the maintenance garage will be subject to the OSHA Lead in Construction Standard 29 CFR 1926.62. In the event of deconstruction of the maintenance garage, a representative sample of the waste stream created during the project should be collected and tested for total lead using the TCLP method to demonstrate the waste generated is not a hazardous waste and can be disposed of at a Class II landfill. The composite sample shall consist of at least five subsamples collected to represent the entire volume of building materials. If the TCLP lead concentration is below 5.0 mg/L, the waste stream may be disposed of at the local landfill. If it's above 5.0 mg/L, additional sampling or LBP abatement may be required.

4.5 LEAD DUST

Laboratory results of the samples collected from the north main building showed eight samples with detectable concentrations of lead. These samples were assigned lead hazard risk categories using the

Standard Guide for Conducting Lead Hazard Assessment of Dwellings and of Other Child-Occupied Facilities, issued by the American Society for Testing and Materials (ASTM E 2115-19).

The evaluation (**Table 2** in **Section 3.8**) shows a <u>moderate hazard risk</u> for samples collected in the shooting range, arms vault, and kitchen. The presence of lead dust as a moderate hazard risk in the shooting range, arms vault, and kitchen area should be addressed through abatement by an accredited abatement contractor. Abatement of lead dust can include use of a high-efficiency particulate absorbing (HEPA) filter vacuum and wet cleaning in the areas where lead dust was found to be present. A HEPA vacuum and wet cleaning of any HVAC systems attached to those areas would be necessary as well. Although not sampled, the plenum space above the shooting bench and the roof of the north main building should be addressed by abatement by an accredited abatement contractor during renovation of these areas of the north main building.

4.6 PCBS & MERCURY IN BUILDING MATERIALS

At the time of building renovation and demolition, all PCB-containing ballasts and mercury-containing thermostats will require special handling and disposal. Fluorescent light tubes should be recycled or reused if they are be removed or replaced.

5.0 LIMITATIONS AND RELIANCE

This Phase II ESA and BMI was conducted in a professional manner in accordance with generally accepted practices, using the degree of skill and care ordinarily exercised by environmental consultants under similar circumstances. WGM observed the degree of care and skill generally exercised by the profession under similar circumstances and conditions. No other warranties, expressed or implied, are made.

No site investigation can wholly eliminate uncertainty regarding the potential for contamination or hazardous material in connection with a property. The investigation was completed to reduce, but not eliminate, this uncertainty. Due to physical limitations inherent to this or any environmental assessment, WGM does not warrant the Site is free of pollutants or that all pollutants and hazardous materials have been identified at the Site. This report is not definitive and should not be assumed to be a complete or specific definition of all conditions above or below grade. Subsurface conditions may differ from the conditions implied by the site observations and sampling. As such, no absolute determination of environmental risks is made concerning the Site. WGM also makes no representation or warranty that the past or current operations at the Site are or have been in compliance with applicable federal, state, and local laws, regulations, and/or codes.

This Phase II ESA/BMI report has been prepared by WGM for the City of Kalispell, who may rely on the findings of the report. The Site owner may use the information to make informed decisions; however, in using the information in the report, the owner is doing so at their own risk and shall have no legal recourse against WGM, its parent, or its subsidiaries, as WGM was not contracted by the owner to complete the investigation.

6.0 REFERENCES

DEQ, 2013. Montana Department of Environmental Quality, Background Concentrations of Inorganic Constituents in Montana Surface Soils. Prepared for Montana DEQ, September 2013.

DEQ, 2018. Montana Department of Environmental Quality, Montana Risk-Based Corrective Action Guidance for Petroleum Releases. Prepared by Montana DEQ, May 2018.

DEQ. 2019. Montana Department of Environmental Quality, Asbestos Control Program (MDEQACP). Administrative Rules of Montana (ARM) 17.74.354. Accessed September 2022 at https://deg.mt.gov/cleanupandrec/Programs/asbestos.

DEQ, 2021a. Montana Department of Environmental Quality, Surface/Subsurface Soil Screening Flowchart Part 1 – Direct Contact, July 2021.

DEQ, 2021b. Montana Department of Environmental Quality, Surface/Subsurface Soil Screening Flowchart Part 2 – Leaching to Groundwater, July 2021.

EarthTech Environmental, 2021. Phase I Environmental Site Assessment, Samaritan Inn, Kalispell, Montana. Report prepared by EarthTech Environmental for the City of Kalispell. March 16, 2021.

HUD, 2012. U.S. Department of Housing and Urban Development. Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing. Office of Health Homes and Lead Hazard Control. Second Edition, July 2012.

LaFave JI. 2000. Potentiometric Surface Map of the Deep Aquifer, Kalispell Valley: Flathead County, Montana. Montana Bureau of Mines and Geology Ground-Water Assessment Atlas 2B-02. 1:63,360

LaFave, John, 2003. Potentiometric Surface Map of the Basin-Fill and Bedrock Aquifers, Mineral and Kalispell Counties, Western Montana. Montana Groundwater Assessment Atlas 4, Part B, Map 6.

Smith LN. 2000. Thickness of the Confining Unit in the Kalispell Valley, Flathead County, Montana. Montana Bureau of Mines and Geology Ground-Water Assessment Atlas 2B-07. 1:150,000

WGM, 2022a. Sampling and Analysis Plan Phase II Environmental Site Assessment and Building Materials Inspection, Samaritan House Property, Kalispell, Montana. Report prepared by WGM Group, Kalispell, Montana, for the City of Kalispell. September 7, 2022.

Weston, 2018. Programmatic Quality Assurance Project Plan, City of Kalispell Brownfields Program, Kalispell, Montana. Report prepared by Weston for the City of Kalispell. July 2018.

FIGURES

FIGURE 1 – VICINITY MAP

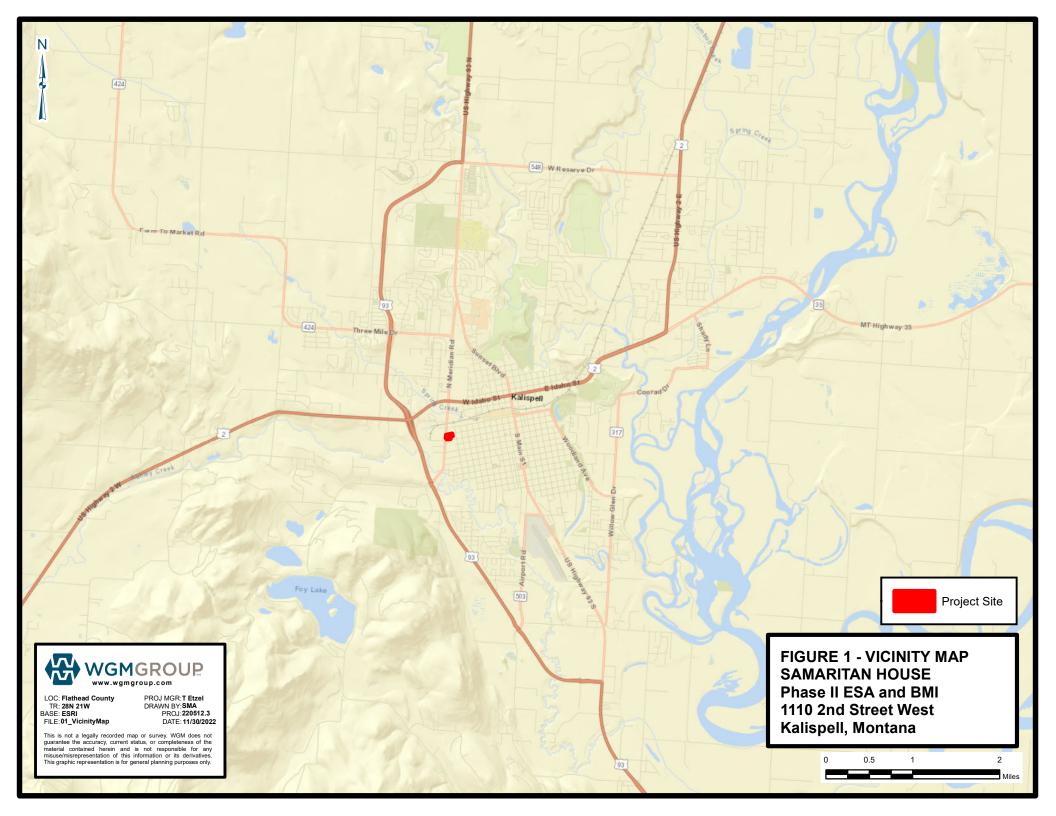
FIGURE 2 - SITE MAP

FIGURE 3 - SITE PLAN

FIGURE 4 – NORTH MAIN BUILDING ASBESTOS SAMPLE LOCATIONS

FIGURE 5 – SOUTH MAIN BUILDING SAMPLE ASBESTOS LOCATIONS

FIGURE 6 – MAINITENANCE GARAGE SAMPLE ASBESTOS LOCATIONS


FIGURE 7 - NORTH MAIN BUILDING XRF LOCATIONS

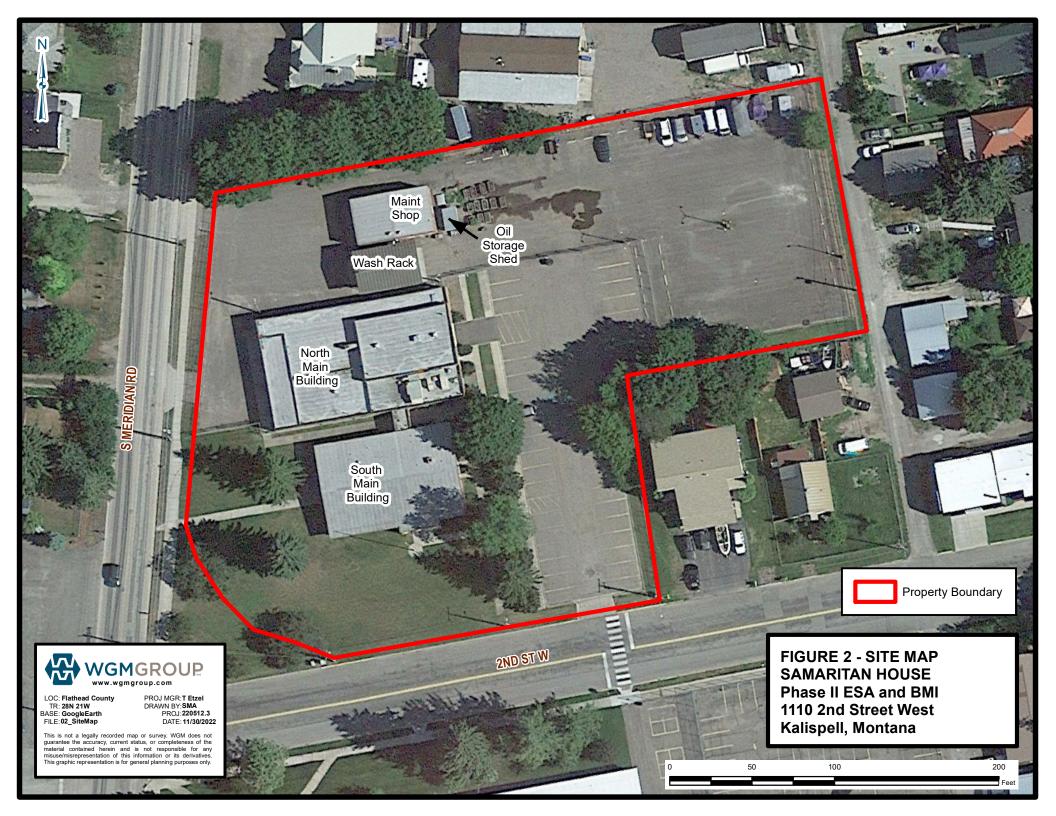
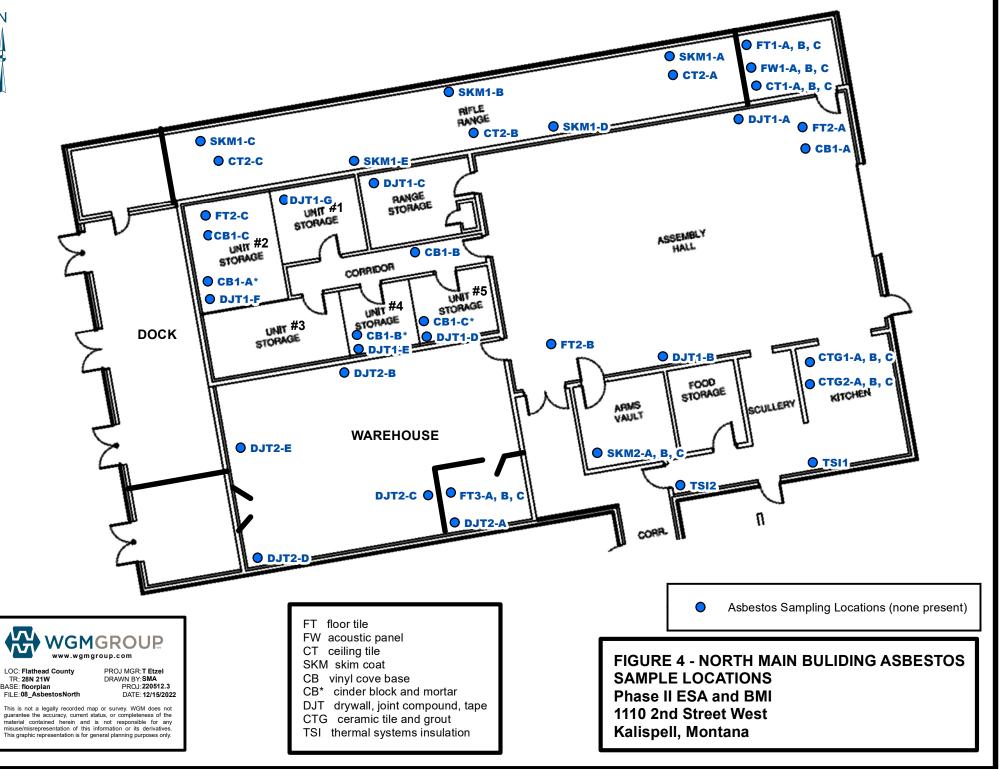

FIGURE 8 – SOUTH MAIN BUILDING XRF LOCATIONS

FIGURE 9 – MAINITENANCE GARAGE XRF LOCATIONS


FIGURE 10 – LEAD DUST SAMPLE LOCATIONS

LOC: Flathead County PROJ MGR:T Etzel
TR: 28N 21W DRAWN BY:SMA
PROJ: 220512.3
FILE: 05FIGURE AsbestosSouth DATE: 12/15/2022

This is not a legally recorded map or survey, WGM does not guarantee the accuracy, current status, or completeness of the material contained herein and is not responsible for any misuse/misrepresentation of this information or its derivatives. This graphic representation is for general planning purposes only.

CT ceiling tile

DJT drywall, joint compound, tape

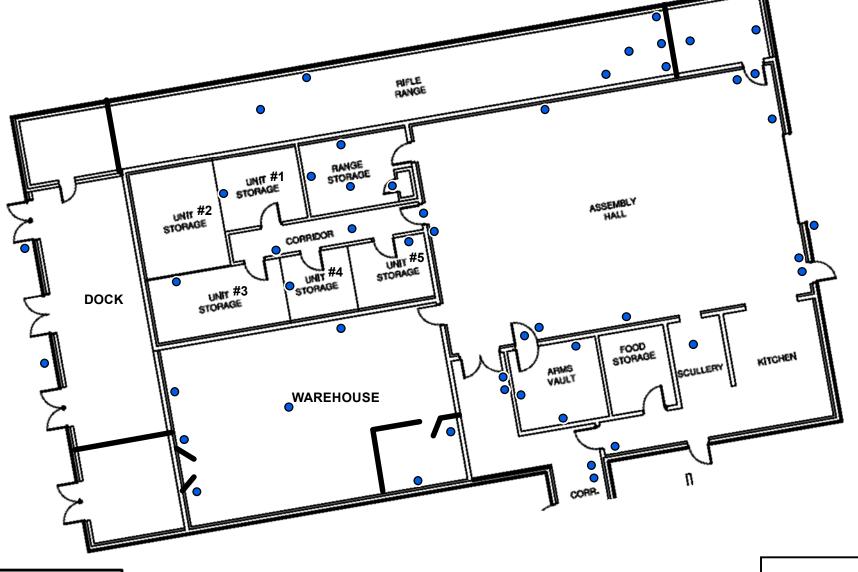
CB vinyl cove base

CTG ceramic tile and grout PW pipe wrap

EB elbow

FIGURE 5 - SOUTH MAIN BULIDING ASBESTOS SAMPLE LOCATIONS

Phase II ESA and BMI 1110 2nd Street West Kalispell, Montana


LCC: Fathead County TR: 28N 21W BASE: google earth FLE: 07_Asbestos Maint PROJ MGR:TEtral DRAWN BY:SMA PROJ.220512.3 DATE: 12/15/2022

This is not a legally recorded map or survey. Widdl does not gueranee the accuracy, current status, or completeness of the material contained herein and is not exposable for any nisusaemiran presentation of this information or its derivatives. This graphic representation is for general plenning purposes only.

FIGURE 6 - MAINTENANCE GARAGE BUILDING ASBESTOS SAMPLE LOCATIONS

Asbestos detected

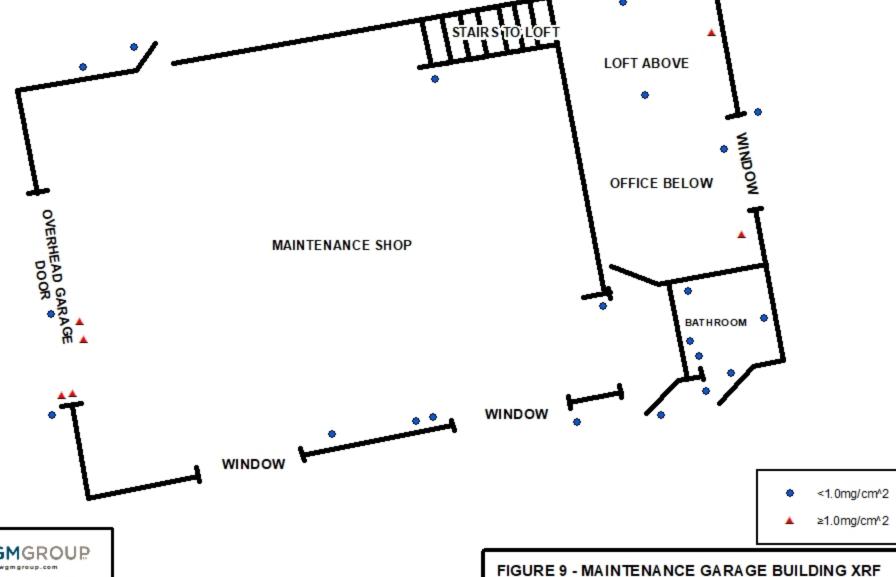
Phase II ESA and BMI 1110 2nd Street West Kalispell, Montana

LOC: Flathead County TR: 28N 21W BASE: floorplan FILE: 07FIGURE_XRFNorth PROJ MGR:T Etzel DRAWN BY:SMA PROJ:220512.3 DATE:12/15/2022

This is not a legally recorded map or survey. WGM does not guarantee the accuracy, current status, or completeness of the material contained herein and is not responsible for any misuse/misrepresentation of this information or its derivatives. This graphic representation is for general planning purposes only.

• <1.0mg/cm^2

FIGURE 7 - NORTH MAIN BULIDING XRF LOCATIONS
Phase II ESA and BMI
1110 2nd Street West
Kalispell, Montana



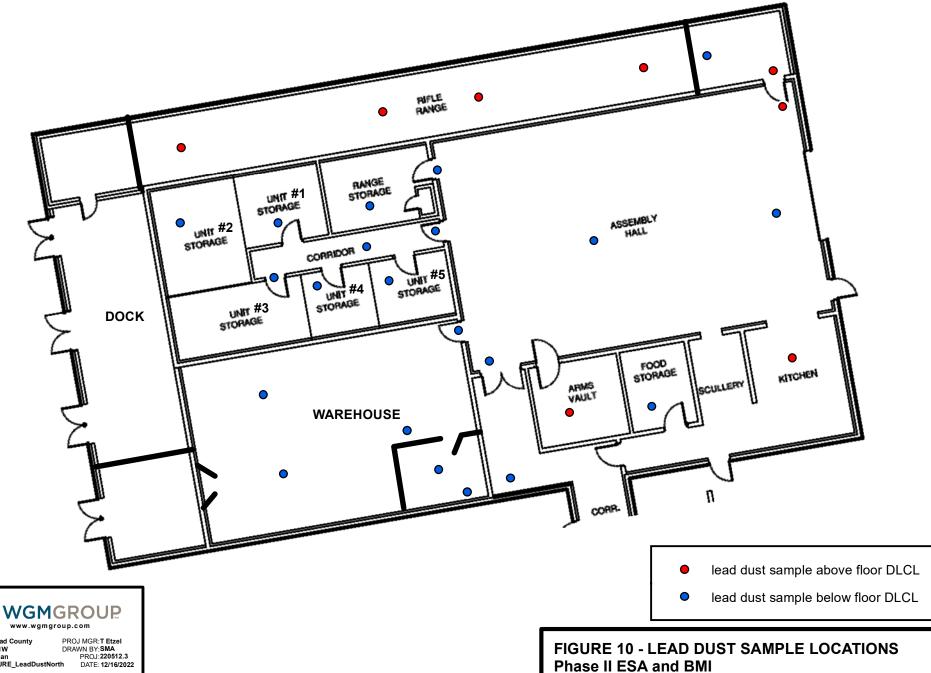
LOC: Flathead County TR: 28N 21W BASE: floorplan FILE:08FIGURE_XRFSouth PROJ MGR:T Etzel DRAWN BY:SMA PROJ:220512.3 DATE:12/15/2022

This is not a legally recorded map or survey. WGM does not guarantee the accuracy, current status, or completeness of the material contained herein and is not responsible for any misuse/misrepresentation of this information or its derivatives. This graphic representation is for general planning purposes only.

<1.0mg/cm^2

FIGURE 8 - SOUTH MAIN BULIDING XRF LOCATIONS
Phase II ESA and BMI
1110 2nd Street West
Kalispell, Montana

LOCATIONS


Phase II ESA and BMI

1110 2nd Street West

Kalispell, Montana

TR: 28N 21W BASE google earth FLE:09_LeadPaintMaint PROJ MGR. TEtral DRAWN BY, SMA PROJ 220512.3 DATE: 12/15/2022

This is not a legally recorded map or survey. WGM does not guarantee the accuracy, current status, or completeness of the material contained herein and is not expossible for any insusanity presentation of this information or its derivatives. This graphic representation is for general planning purposes only.

1110 2nd Street West Kalispell, Montana

LOC: Flathead County P
TR: 28N 21W D
BASE: floorplan
FILE:10FIGURE_LeadDustNorth DATE: 12/16/2022

This is not a legally recorded map or survey. WGM does not guarantee the accuracy, current status, or completeness of the material contained herein and is not responsible for any misuse/misrepresentation of this information or its derivatives. This graphic representation is for general planning purposes only.

Project Name: Samaritan House Phase II ESA	Personnel: Brent Merritt	Dates Drilled: 0/04/22
Location: Kalispell, Montana	Boring No: 55-1	SWL / meas pt:
Project No: 220512.1 Phase 04 05	Total Depth:	Wel / Soil Boring
Drilling Company/Driller: WET/John Babcock	Drilling Method: Direct-Push/Geoprobe	Sample Method: Continuous Dual Tube MINI RAE 3000

DEPTH	MATERIAL DESCRIPTION	% Recovery	SAMPLE#	PID	COMMENTS
2 —	n 8" CONFRETE Dry/pamp fill material	56%	SAMPLE #	Piom Pom	PK # 5170 HOSTAINING/ODOR
8—	panip gray to 5? Starball AND arm sleen SNO of sleen	25% 		0,4	
/o —			; c		Maint shop OLD PIT SB-1

Project Name: Samaritan House Phase II ESA	Personnel: Brent Merritt	Dates Drilled: 10/04/22
Location: Kalispell, Montana	Boring No: 53-2	SWL / meas pt:
220512.1 Priase •4 0°)	Total Depth: 8	Well Soil Boring
Drilling Company/Driller: WET/John Babcock	Drilling Method: Direct-Push/Geoprobe	Sample Method: Continuous Dual Tube Mi wi RAE 3000

DEPTH	MATERIAL DESCRIPTION	% Recovery	SAMPLE#	PID	COMMENTS
2 — 4 — — — — — — — — — — — — — — — — —	MATERIAL DESCRIPTION 28" CONCRETE DRY TSWANN, Tan S+S INNED Danip v tan, gray Clay-	60%	532-1 C 1024	PIDN PPN	#5163 NO ODOR/STAINING 5164 5165 5166
8			\$\$2-2 @1029	1.5	Maint p Maint p OLD PIT 182

Project Name: Samaritan House Phase II ESA	Personnel: Brent Merritt	Dates Drilled: 10/04/22
Location: Kalispell, Montana	Boring No: 5B-3	SWL / meas pt:
Project No: 220512.1 Phase 😂 05	Total Depth:	Well Soil Boring
Drilling Company/Driller: WET/John Babcock	Drilling Method: Direct-Push/Geoprobe	Sample Method: Continuous Dual Tube

		%			v
DEPTH	MATERIAL DESCRIPTION	Recovery	SAMPLE#	PID p? *^	COMMENTS
2	Fill material Fill material For Sta	50%	16		pic 5158 No STAINING/ODOR
4 _	No a second		531-1	0.1	
_ 	grin's clay w/	94%		[,]	NO STAINING ODOR
\$ 3	grin's shock 4"	• = =	581-2	1.7	#5159
					wain!
			sl.		WASH PACK 583
	8	-		ja s	
	Phi .			D:	NT

5 URINIT 2-4 and 6-8

Project N Samarita	lame: n House Phase II ESA	Pe	rsonnel: Br	ent Merritt		Dates [Orilled: 10/4/22	
Location: Kalispell, Montana			ring No:	58-3-		SWL / meas pt:		
Project N 220512.1	lo: Phase 04	То	tal Depth:			Well / s	Soil Boring	
Drilling C	ompany/Driller: nn Babcock	Dr	illing Metho	d: Direct-Push/	Geoprobe	Sample	Method: Continuous Dual Tube	
DEPTH	MATERIAL DESCRIPTION		% Recovery	SAMPLE #	PID		COMMENTS	
				5B4-2 C0810		- 1	1HIS IS A DUP ample of SB3-2" 68' 9/led 2205/2-584-2" @ 0810	

Chain of Custody & Analytical Request Record . www.energylab.com

	1		1	
Page /		of	/	

Account Information (Billing information)		Report Info	rmation (#	different than Accou	ınt Information)	С	omme	nts	
Company/Name WGM Grown INC		Company/Name	Company/Name						
Contact HIRALIDA HING		Contact TYLSR FTZCL					PLEASE CALL SAMPLER WIANG QUESTIONS		
Phone 406 - 728 - 4611		Phone					MUL	oler W/149	
Mailing Address		Mailing Address					1 A	- 1416	
City, State, Zip		City, State, Zip					JUZ!	3710N>	
Receive Invoice Hard Copy DEmail Receive Repor	1P, COM	Email TE	TZEL	@ WGI	Corrap,	com			
Receive Invoice □Hard Copy ☑Email Receive Report	t □Hard Copy □Email	Receive Report 0	□Hard Copy	DĘmail					
Purchase Order Quote	Bottle Order	Special Report/Form		DD/EDT (contact labor	ratory) 🗆 Other			Security	
220512.	41961		10						
Project Information		Matrix Codes A - Air		Ana	lysis Requeste	ed			
Project Name, PWSID, Permit, etc. SAHARCITAL	House PhII-	W- Water	36)				All turnaround times are standard unless marked as	
Sampler Name GIELDI MCIZIETT Sampler Phone	240-0573	S - Soils/ Solids	Sacura,	7				RUSH.	
	npliance ⊠Ýes □ No	V - Vegetation B - Bioassay	1.0					Energy Laboratories MUST be contacted prior to	
Lab provided preservatives were used Yes No		O - Other	2- 1- 1	702			g	RUSH sample submittal for	
MINING CLIENTS, please indicate sample type. *If ore has been processed or refined, call before sending.		DW - Drinking Water	450	V > V			Attached	charges and scheduling – See Instructions Page	
☐ Byproduct 11 (e)2 material ☐ Unprocessed ore (NO	T ground or refined)*		US =	1 150			A tt		
Sample Identification	Collection	Number of Containers (See Codes	15/2 6	N - 200			See		
(Name, Location, Interval, etc.)	Date Time	Above)	XX	· / /			TA	AT Laboratory Use Only	
220512-5151	194/22 1/39		1 1						
531-2	1199	3 5	XX	(X X					
3 5B2-1	1024	3 5	XX	XX					
4 5132-2	102-9	3 5	XX	XX					
5 533-1	0916	3 5	XX	XX					
6 5133-2	0926	3 5	K A	C X X					
7 5134-2	0810	3 5	XX	VX					
8 V 5W1	1/30	9 W	XX	XX				3	
9									
10 TRIP BUNK		IW							
	e/Time Signat		1	Received by (print)		Date/Time	Sic	gnature	
Record MUST 15/88/27 17 10	14/22 1600 /2	at Illu	0						
be signed Relinquished by (print) Dat	e/Time Signat	996	3 -	Received by Laborat	ory (print)	Date/Time	Sig	gnature	
Shipped By Cooler ID(s) Custody Seals	Intact Receipt Tem		On Ice		nent Type	Amount	Receipt	t Number (cash/check only)	
YNCB	Y N °C		ΥN	CC Cash		\$			

GAR-XXX A,B,L

Project:

Asbestos	Bulk	Sampling	Field	Form
----------	------	----------	--------------	-------------

Personnel: BHERRIT

NWI = NORTH WING

Location:

Date: 10/04/22 Other:

SWI = SOUTH WING

Project #: 720512

GAR = GARAGE

PET = PETRO SHED GAR - NO POBS BALLESTS

Sample ID	Material Description	Location	Comments
GAR-CTI-A,B,C	STORED HERE	GARAGE	
DJTI-A	DIZYWALL, JC, TOPE Splotter TEXTURE	134 STAIRS TO LOFY	
(- 5		ABOVE office will now	
V - C		By office DOOR	
C13.1 - A	CINDERBUCK + HORTAR	NORTH WALL - INTERIOR	MAUVE rollet
- B		South wall	
V -c		EAST Wall	V
501- A,B,C	STALING COMPOUND	TOP OF DOOR	
DCI -A	CAUK	EXTERIOR OF Main DOOR	
(3		L	
Vc	J/	EXTERIOR BATHEOM	
GLI-A,B,C	WINDOW = 1921NG	EXTERNIC, SOUTH	A, B = EAST WANDOW C = WEST EVINDOW
BMI-A,BC	BRICK + MORTAR	B NW CORNER C= S	e corner

Asbestos Bulk Sampling Field Form

		rispestes bank sampling rich	a i oiiii
Project:	SOIM HE	Personnel: ろM	
Location:		Date: 10/04/22	
		Other:	
Project #:	220512		

GAR

Sample ID	Material Description	Location	Comments
GAR-FTI-A,B,C	White IZX Ft Whight	GARAGE BATHROOM	<50 Ft2
VCBI-A,BK	BROWN VINYL COVE BASE		< 30ft
50	UTH WINS SUPP		
SWI-PWZ-A	PIPEWRAP From water HEATER	HEATING ROOM	VERT PIPE
PW3-A	11 11 4" line	1)	1/ 33
PW4-A	n n 4" line	HORIZONTAL PIPE	
EBI-A	ELBOW	FIRST 90 coming off OF WATER HEATER	
E132 - A	ELBOW	90 BY TOP OF	
E133 - A	ELTSOW	90 ABOVE TOTALIZER IN NW CORNER	۶
		-	

Page 1 of 2+ supp South Wing

Asbestos Bulk Sampling Field Form

Project:	San He	Personnel:	BMER	RITT	
Location:		Date:	10/5	122	
		Other:			
Project #:	720512				

1314

Sample ID	Material Description	Location	Comments
T N	12x FLOOR TILE WHITE WITH	CORPLINOR - ENTRANCE	
SWI-FTI-A	SWIPE PATTERN+ BLACK WASTIC	TO ASSEMBLY HOLL	*
1	/	CORPUDOR BY FILE .	ADMIN
B		STURAGE DOOR - EAST	/
V C		INSIDE FILE STORAGE	
	V	ROOM BY SOUTH DOOR	FOUND UNDER TILE
	DRYWALL, TXPE-SMOOTH	CORRIDOR - ENTRANCE	
DITI-A		TO ASSEMBLY Hall	
	wells	CORRIDOR-WEST SIDE	
- 13		BY ZX IT DOOR	
		CORRIDOR - EAST SIDE	a
V - C	V OLIVE PAINT	E SOUTH THE	1444
	DRIWAL, JC, TADE		- 134 KITCHEN DOOR
DJT2-A	BLOB FEXTURE - WHITE POINT	ONLY-NORTH HALF	
	1	134 ZXIT DOOR IN	
3	1	CORRIDOR	
		@ SOUTH END OF	
V C	V	waterialin contribor	
Λ	2x4 CEILING TILE WHITE	CORRIDGE	
CTI-A	W/PINHoles and FISSURES	A BIAN L H. I	FILE STORNELE NOOM)
R		ADMIN #)	= ADMIN #
<u> </u>		/22/3	- A 0
6.	1,	CLASSROOM Z	
	12 THE STALKE	- NEW MARKET	7-
FTZ-ABC	12x FLOOR TILE - ORANGE		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+ 13LACK MASTIC	UNIT ADVISOR ROOM	

Page 2 of 2 15UPP SOUTH WING

Asbestos Bulk Sampling Field Form

Project:	SAMI HEE	Personnel: BUYERRITT
Location:		Date: /0/05/22
		Other:
Project #:	220512	

Sample ID	Material Description	Location	Comments
SWI- FT3 - A	+ BLACK MASTIC	classroom 2 By EXIT	
(3		CORRIDOR BY ADMIN	OH I
		CORRIGOR BY SAST ENTRANCE	
CT2-ABC	BATWING FISSURES	CORPLIDOR - ENTRAM	26
CT3-ABC	MOSTLY PIN HOLES	CORPLIDOR BY EXIT TO SOUTH SIGN	
CBI-A	BROWL VINYL COVE BASE	ENTRANCE	
(-13		CLASSROOM Z EXIT	
V - C		ADMIH LOOK	
CT4 - A,B,C	TILE	ABOVE BUTH CKSS-	DIFFICULT TO ACCESS ABOVE
CTS-ABC	Zx4 CZILING TILE	WOMENS BATHROOM	EXISTING DROP
PWI - A	42110W PIPEWRAP	c 1055 ROOM 2	<i>y</i>
C791-A BC	2x2" gRAY CZRAMIC TILE and Carrow - mastk	MENS BATHROOM	
CTG2-ABC	TSLUE WY MOSTIC		

	/ 2	
Page	of	

Asbestos Bulk Sampling Field Form
Personnel: 1811)

Project: Location:

Date: 10/5/22

Project #: 220512

Other:

Sample ID	Material Description	Location	Comments
. 15 A 54	12x WHITE FLOOR THE IN		10×16=160 ft2
NWI-FTI-A,B,C	W/UERY LIGHT Flakes NAME	EAST 24-10	į į
	FIBROUS Wall material	ı)	#5174,5175
FWI-A,BC			1,
	2x4' CEILING Tile-white	11	
CTI-A,B,C	WITH PIN PRICKS	·	CZITING , CHANNES
CTZ-A	12x CEILING THE + WASTIC	SHOOTING land EAST	
	WHIT WIPINHOLIST FISSURES	0 00	13 at fle 15 at fle
B		MID	
1/	T = 5"		criting
V C	↓	WEST.	Y
	Tan Skim CONT	Nonth	ALSO collected
SKM1-A		wall EAST	, 0 p
SKM1-13		Wall MID	Davis > 1000ft
SEMIT		wall MID	ARCEA / LOWER
SKM 1 - C	-	wall west	south wall mid west
	·		
PLI - A		20137	NO PL PIVELLY, BUT
1			- will collect
PLLTB		1410	- Will collect
151 - c		mest	ELSEWHERE
	12x floor-TILE LT Tan W/	ASSIMBLY HALL NE	
F72 - A	DARK FLAKES + mastic >		

CLICHT colore

Asbestos Bulk Sampling Field Form

Project:	Sam Hse	Personnel: BM
Location:		Date: 10/5/22
-		Other:
Project #:	220512	

Sample ID	Material Description	Location	Comments
NWI-P12-13	17x FUNR THE W FAR WEGTIC	ASSEMBLY HALL SW	
V - c		BEHIND DOOR	,,,
CBI - A	BREWEN VINYL COVE BASE	ASSEMBLY HALL TERHIND	on but mail
F ()		BEHIND DOOR TO ASSEMBLY	ON EINDER BLOCK,
VC		UNIT STORAGE Z BEHIND DOOR	ON DRYWAI)
D5T1 - A	DRYWAll, JOINT COMPOUND + Tape	NORTH Wall- EAST END	ran point
1 - 13	TALL PAINT	ASMR HALL SOUTH WALL) BELOW CLOCK	-1
- c	WHITE POINT	Range STORAGE ROOM	•
- " D	WHITE PAINT	WEST WALL	
- E	WHITE PAINT	SOUTH WALL	
- F	TAN PAINT	SOUTH WALL	
V-G	JOHN WHITE PAINT	NORTH WE!	11
SKM2-A, B,C	SKIM COAT - GREEN PAINT	BOOWH WALL CHORTH W	RANGE STORMAE

Can HAROLA

Asbestos Bulk Sampling Field Form

Project:	Sam HER	Personnel: 1314
Location:		Date: 10/05/22
		Other:
Project #:	220512	

Sample ID	Material Description	Location	Comments
NWI-CBI-A	CINDER BLOCK+ HORTAR	UNIT STOR 2	
(13		UNIT STOR 4	
· C		UNIT STOR 5	
FT3-A.B.C	W FLAIRES + BLACK MASTIC	WHSE office	~120 ft2
DJTZ- A	DIZYUALL, ITC, TAPE	whse office	
B	NO PAINT	WHSE CEILING DAMAGE	
C	RED PAINT	WHSE OFFICE EXT	WPSE- NO PCBS
	TAN PAINT	WHIE SOUTH WALL	2 Hg
V €	THING HAT	WHSE BY DOOR TO	2)
CTG1 - A, B,C	MAROON GXG" CERAMIC TILE arel GAROUT - FLOOR COVERING	KITCHEN)	KITELTEN IS SMEET
CTGIZ - A, B, C	GREEN 4x4" CTRAMIC TILE	11-	V Kg
TSII-A	ELBOW W/ plastie shell	POTABLE WATER " LA	a a
7512-A	PIPE WRAP	"HOT WATER" LABLE O	N DIPE

Project Name: Samaritan House Phase II ESA	Personnel: Brent Merritt	Dates Drilled: 0/04/22
Location: Kalispell, Montana	Boring No: 55-1	SWL / meas pt:
Project No: 220512.1 Phase 04 05	Total Depth:	Wel / Soil Boring
Drilling Company/Driller: WET/John Babcock	Drilling Method: Direct-Push/Geoprobe	Sample Method: Continuous Dual Tube MINI RAE 3000

DEPTH	MATERIAL DESCRIPTION	% Recovery	SAMPLE#	PID	COMMENTS
2 —	n 8" CONFRETE Dry/pamp fill material	56%	SAMPLE #	Piom Pom	PK # 5170 HOSTAINING/ODOR
8—	panip gray to 5? Starball AND arm sleen SNO of sleen	25% 		0,4	
/o —			; c		Maint shop OLD PIT SB-1

Project Name: Samaritan House Phase II ESA	Personnel: Brent Merritt	Dates Drilled: 10/04/22
Location: Kalispell, Montana	Boring No: 53-2	SWL / meas pt:
220512.1 Priase •4 0°)	Total Depth: 8	Well Soil Boring
Drilling Company/Driller: WET/John Babcock	Drilling Method: Direct-Push/Geoprobe	Sample Method: Continuous Dual Tube Mi wi RAE 3000

DEPTH	MATERIAL DESCRIPTION	% Recovery	SAMPLE#	PID	COMMENTS
2 — 4 — — — — — — — — — — — — — — — — —	MATERIAL DESCRIPTION 28" CONCRETE DRY TSWANN, Tan S+S INNED Danip v tan, gray Clay-	60%	532-1 C 1024	PIDN PPN	#5163 NO ODOR/STAINING 5164 5165 5166
8			\$\$2-2 @1029	1.5	Maint p Maint p OLD PIT 182

Project Name: Samaritan House Phase II ESA	Personnel: Brent Merritt	Dates Drilled: 10/04/22
Location: Kalispell, Montana	Boring No: 5B-3	SWL / meas pt:
Project No: 220512.1 Phase 😂 05	Total Depth:	Well Soil Boring
Drilling Company/Driller: WET/John Babcock	Drilling Method: Direct-Push/Geoprobe	Sample Method: Continuous Dual Tube

		%			v
DEPTH	MATERIAL DESCRIPTION	Recovery	SAMPLE#	PID p? *^	COMMENTS
2	Fill material Fill material For Sta	50%	16		pic 5158 No STAINING/ODOR
4 _	No a second		531-1	0.1	
_ 	grin's clay w/	94%		[,]	NO STAINING ODOR
\$ 3	grin's shock 4"	• = =	581-2	1.7	#5159
					wain!
			sl.		WASH PACK 583
	8	-		ja s	
	Phi .			D:	NT

5 URINIT 2-4 and 6-8

Project N Samarita	lame: n House Phase II ESA	Pe	rsonnel: Br	ent Merritt		Dates [Orilled: 10/4/22	
Location Kalispell,		Вс	ring No:	58-3-		SWL / meas pt:		
Project N 220512.1	lo: Phase 04	То	tal Depth:			Well / s	Soil Boring	
Drilling C	ompany/Driller: nn Babcock	Dr	illing Metho	d: Direct-Push/	Geoprobe	Sample	Method: Continuous Dual Tube	
DEPTH	MATERIAL DESCRIPTION		% Recovery	SAMPLE #	PID		COMMENTS	
				5B4-2 C0810		- 1	1HIS IS A DUP ample of SB3-2" 68' 9/led 2205/2-584-2" @ 0810	

Chain of Custody & Analytical Request Record . www.energylab.com

	1		1	
Page /		of	/	

Account Information (Billing information)		Report Info	rmation (#	different than Accou	ınt Information)	С	omme	nts	
Company/Name WGM Grown INC		Company/Name					0		
Contact HIRALIDA HING		Contact	YLER	ETEC	L		CEAS	E 6911	
Phone 406 - 728 - 4611		Phone					PLEASE CALL SAMPLER W/AMY QUESTIONS		
Mailing Address		Mailing Address					1 A	- 1416	
City, State, Zip		City, State, Zip					JUZ!	3710N>	
Receive Invoice Hard Copy DEmail Receive Repor	1P, COM	Email TE	TZEL	@ WGI	Corrap,	com			
Receive Invoice □Hard Copy ☑Email Receive Report	t □Hard Copy □Email	Receive Report 0	□Hard Copy	DĘmail					
Purchase Order Quote	Bottle Order	Special Report/Form		DD/EDT (contact labor	ratory) 🗆 Other			Security	
220512.	41961		10						
Project Information		Matrix Codes A - Air		Ana	lysis Requeste	ed			
Project Name, PWSID, Permit, etc. SAHARCITAL	House PhII-	W- Water	36)				All turnaround times are standard unless marked as	
Sampler Name GIELDI MCIERINE Sampler Phone	240-0573	S - Soils/ Solids	Sacura,	7				RUSH.	
	npliance ⊠Ýes □ No	V - Vegetation B - Bioassay	1.0					Energy Laboratories MUST be contacted prior to	
Lab provided preservatives were used Yes No		O - Other	2- 1- 1	702			g	RUSH sample submittal for	
MINING CLIENTS, please indicate sample type. *If ore has been processed or refined, call before sending.		DW - Drinking Water	450	V > V			Attached	charges and scheduling – See Instructions Page	
☐ Byproduct 11 (e)2 material ☐ Unprocessed ore (NO	T ground or refined)*		US =	1 5			A tt		
Sample Identification	Collection	Number of Containers (See Codes	15/2 6	N - 200			See		
(Name, Location, Interval, etc.)	Date Time	Above)	XX	· / /			TA	AT Laboratory Use Only	
220512-5151	194/22 1/39		1 1						
531-2	1199	3 5	XX	(X X					
3 5B2-1	1024	3 5	XX	XX					
4 5132-2	102-9	3 5	XX	XX					
5 533-1	0916	3 5	XX	XX					
6 5133-2	0926	3 5	K A	C X X					
7 5134-2	0810	3 5	XX	VX					
8 V 5W1	1/30	9 W	XX	XX				3	
9									
10 TRIP BUNK		IW							
	e/Time Signat		1	Received by (print)		Date/Time	Sic	gnature	
Record MUST 15/88/27 17 10	14/22 1600 /2	at Illu	0						
be signed Relinquished by (print) Dat	e/Time Signat	996	3 -	Received by Laborat	ory (print)	Date/Time	Sig	gnature	
Shipped By Cooler ID(s) Custody Seals	Intact Receipt Tem		On Ice		nent Type	Amount	Receipt	t Number (cash/check only)	
YNCB	Y N °C		ΥN	CC Cash		\$			

Lead Dust Wipe Sampling Field Form

Project: Samaritan House

Location: Kalispell, Montana

Project #: 220512.1 Phase 04

Personnel: Brent Merritt

Date: 10/6

Other: / BLIND BLANK FOR

EVERY 20 samples

flofwor ws=wirnowsill

	2-LD+	レル、	
Sar	nnle ID		Location

	Sample ID	Location	Surface	Dimensions	Comment
745	(CORRIDOR ASORMISH, Hall ENTRANCE	12x fison the	12x12	FLOOR #5182
55	2	Assembly He middle	''		FLOOR
800	3	" IT TSY CAST SUT	n.	Y)	from
803	4	11 11 734 SHOT PLY ENT	17	• 1	1 5183
815	5	SHOOTING Range EUTROINCE	1)	1)	" 5189, 85
825	6	" MID	PRINTED CONCRETE	11	11 PERVIND
30	7	WEST		1)	1)
35	8	I EAST	1	h	¥ j
45	9	ASMES HL/PRING STO THRESHOLD	12x F+	Ŋ	SPLINUM ACCESS TOO
50	10	TRNG StO UNDER VENT	11	Ŋ	Samall to ENFIR 5186
09110	(1	ASMB HL/US CORRIDOR ENTRY	II.	11	
0915	12	ENTRY to US3 in: Hall	b	1)	5187
20	13	Missole of USI		/	MOST of FLOOR PSY PEOKES
25	14	MIDDLE OF US 2 UNDER VENT			Atsout 10' From LD-12
30	15	BEHIND DOOR US 4			
35	16	Missole of US5 UNDER VENT			
40	17	II US CORTEIDOR	\checkmark		
50	18	Emirung to WHSE	Painted CONCRETE		
1000	19	WHSE NW AREA	1.1	\vee	

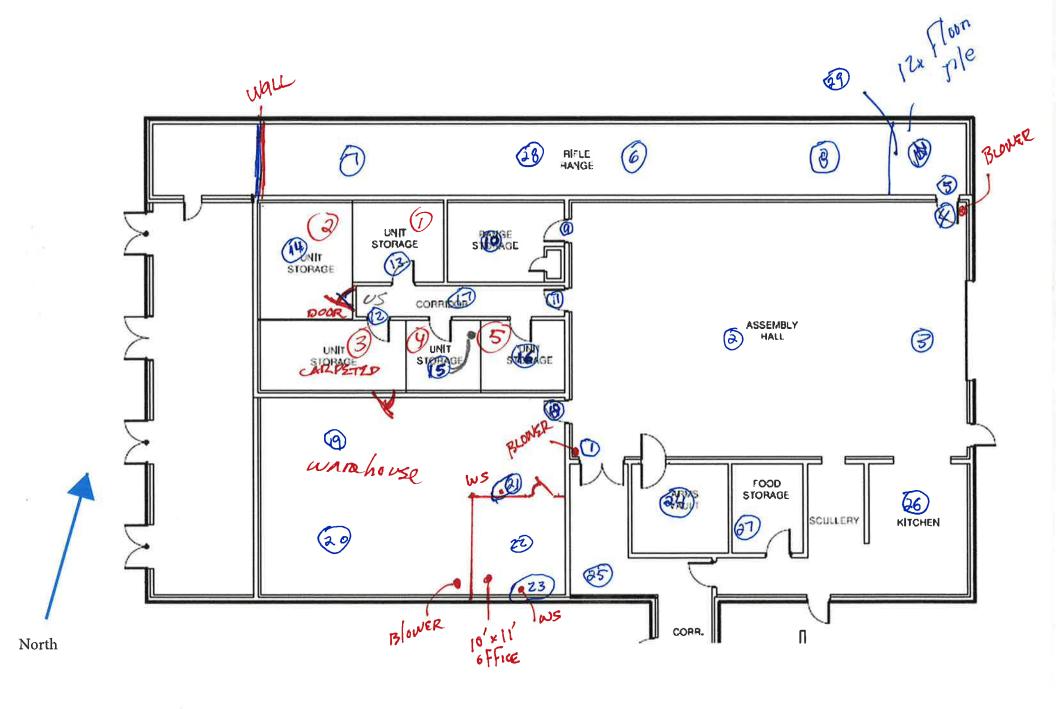
Lead Dust Wipe Sampling Field Form

Project: Samaritan House
Location: Kalispell Montana

Personnel: Brent Merritt

Location: Kalispell, Montana
Project #: 220512.1 Phase 04

Date: 10/6/27
Other:


220512 - LD - XX

W AIR VENTS
IH office
p of Frunge
P 6 F 8 affile 5 188,89
F RIADS 013,18/cm2
* 0, 4 mg/cm2 . HEG
10,91,92
/ F

"Hegotive"

RED = RM # , FEATURE
BLUE = LD - Sample #

Chain of Custody & Analytical Request Record www.energylab.com

Account Information (Billing information)		Repo	rt Infor	mation	(if different	t than Accoun	t Informati	ion)		Cc	omme	ents
Company/Name WGM CAROUP INC		Compa	ny/Name								21	11 /
Contact HIRANDA MINA		Contact	Ty	CER	ETT	LEL					100	se call sampler
Phone (106-773-461)		Phone	406	7.28	- 461	}					VIA	ese call sampler My submitted
Mailing Address		Mailing	Address								1-	
City, State, Zip		City, Sta	ate, Zip							_ 4	VE	5T10N)
Email MANA APO WGMG120UP.	COM	Email	TCT	7.EL	(a) w	GMGI	LOUP,	(on				
	□Hard Copy □Email		Report		/ DEmail							
Purchase Order Quote Bi	ottle Order 4203 B		Report/Forma ELIV □ N		EDD/EDT	(contact labora	tory) 🗆 O	ther				
Project Information			Codes			Anal	ysis Re	quested				
Project Name, PWSID, Permit, etc. SAMARITAN	House	A - A W- V		-								All turnaround times are
Sampler Name BROLIT NETRITT Sampler Phone Z		3. 8	Soils/ Solids	0								standard unless marked as RUSH.
	liance IvYes □ No		egelation Bioassay	7.0	- 1							Energy Laboratories MUST be contacted prior to
Lab provided preservatives were used ☐ Yes ☐ No		0-0	Other	200							pa	RUSH sample submittal for
MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending."		DW -	Vater	2 2							Attached	charges and scheduling – See Instructions Page
☐ Byproduct 11 (e)2 material ☐ Unprocessed ore (NOT			Matrix	2 2							e Ai	
Sample Identification (Name, Location, Interval, etc.)	Collection Date Time	Number of Containers	Matrix (See Codes Above)	200								ELI LAB ID Laboratory Use Only
			_	1 1								
1220512-60-1	10/6/22 745		0	X								
1220512-60-1	10/6/22 745		0	X								
1220512-60-1		1	0	X X								
2 / 2	7 755	1 1 1		-								
2 2 3 7 7	755 800 805	1 1 1	Ø	χ								
2 3 4	755 800 805 815		0	X								
2 3 4 4 5	755 800 805	1 1 1 1	0	X X								
2 3 4 4 5	755 800 805 815 825 830	/	0 0 0 0	X X X X				ē				
2	755 800 805 815 825	/	0 0 0 0 0 0 0	X X X X				ē				
2	755 800 805 815 825 830 835	/	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	χ								
2	755 800 805 815 825 830 835 845 845	/ / / /	0 0 0 0 0 0	χ	Received	d by (print)			Date/Time		S	Signature
2 3 4 4 5 6 6 6 7 8 9 10	800 805 805 815 825 830 835 845 845 850	/ / / / / / / / / / / / / / / / / / /	0 0 0 0 0 0	χ		d by (print)	ry (print)	ē	Date/Time Date/Time			Signature
2	800 805 805 815 825 830 835 845 850	/ / / / / / / / / / / / / / / / / / /	0 0 0 0 0 0	χ	Receive		ry (print)					

Chain of Custody & Analytical Request Record www.energylab.com

Page 2 of 3

Account Information (Billing Information)	Report Infor	mation (#	different than Acco	unt Information)	<u>C</u>	omme	nts
Company/Name WIGH CITCOUP INC	Company/Name						
Contact	Contact						
Phone	Phone						
Mailing Address	Mailing Address						
City, State, Zip	City, State, Zip						
Email	Email						
Receive Invoice □Hard Copy □Email Receive Report □Hard Copy □Email	Receive Report □		□Email				
Purchase Order Quote Bottle Order 220512.1 42038	Special Report/Forma		DD/EDT (contact labo	oratory)			
Project Information	Matrix Codes		An	alysis Requeste	d		
Project Name, PWSID, Permit, etc. SAMMRITAN HOUSE	A - Air W- Water				11		All turnaround times are standard unless marked as
Sampler Name 3 1 CORPUTE Samplet Prone 240.0573	S - Soils/ Solids	5					RUSH.
Sample Origin State PA/State Compliance To Yes No	V - Vegelation B - Bloassay	0 0					Energy Laboratories MUST be contacted prior to
Lab provided preservatives were used ☐ Yes ☐ No	O - Other	10				g	RUSH sample submittal for
MINING CLIENTS, please indicate sample type. 'If ore has been processed or refined, call before sending. □ Byproduct 11 (e)2 material □ Unprocessed ore (NOT ground or refined)*	DW - Drinking Water	NS SI				Attached	charges and scheduling – See Instructions Page
	Number of Containers (See Codes Above)	120				a See	
(Name, Location, Interval, etc.) Date Time C 1 2 2 0 5 1 2 • L D - 1 1 1 1 6 2 2 9 1 0	Above)	7				TA	Laboratory Osa Orny
C10-11-11-11-11-11-11-11-11-11-11-11-11-1							
	, ,	V'					
2 (12 (915	1 0	X					
12 (915) 3 (3 (920)	1 0	X					
4 19 925	1 0	X					
1 14 925 5 15 930	1 0	V					
1 14 925 5 15 930 3 16 935	1 0	×					
19 925 5 15 930 16 935 7 17 940	/ 0 / 0 / 0 / 0 / 0	V					
1 14 925 5 15 930 3 16 935	1 0 1 0 1 0 1 0	×					
14 14 925 5 15 930 6 16 940 13 9 1000		×					
19 925 15 930 16 935 7 17 940 18 950	/ 0 / 0 / 0 / 0 / 0 / 0	×					
4		×	Received by (print)		Date/Time	Siç	gnature
19 925 15 930 16 935 17 17 940 18 950 19 1000 10 7 20 1005	/ O / O / O / O / O / O / O / O / O / O	×	Received by (print) Received by Labora	atory (print)	Date/Time Date/Time		gnature
4 19 925 5 15 930 6 16 940 8 17 17 940 8 18 950 10 70 10 10 5 Custody Relinquished by (print) Date/Time 10 6122 1400 Signature	/ 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0	×	Received by Labora	atory (print)		Sig	

Chain of Custody & Analytical Request Record www.energylab.com

	7		3
Page .	2	_ of .	

Account Information (Billing Information)			Repo	ort Infor	mation	(if diffe	rent than	Accoun	t Informa	tion)			Co	mm	nents	
Company/Name WGM GROUP INC.			Compa	ny/Name												
Contact			Contact	t —	VICT B	E	-) 7	EL								
Phone 17 / 1 G 11			Phone	Phone												
Mailing Address			Mailing	Address	4.											
City, State, Zip			City, St	ate, Zip												
Email	PACIN	1	Email	TI	TEE	LE	W	C(II)	1780	W.	cont	li e				
Receive Invoice □Hard Copy □Email Receive Repor	t □Hard Copy	□Email	Receive	e Report □	Hard Cop	y .ĎĘm	ail									
	Bottle Order	1		Report/Forma		1 CDD/C	DT /			Ottoon						
27517	4-140 88		LEVE	ELIV D	NELAC L] EDD/E	DI (conta	ct laborat	tory) 🖂 (Otner			<u> </u>			
Project Information			Matrix	Codes			-	Analy	ysis R	equest	ed					
Project Name, PWSID, Permit, etc.	HOUSE	THI	W- 1	Water	=											ound times are bless marked as
Sampler Name R 10 1 2 17 17 Sampler Phone	240-05	73	3- 9	Soils/ Solids	3	72		2								USH.
Sample Origin State (1477 EPA/State Com	npliance Yes	s □ No		Vegetation Bioassay	تحيي	10.2									Energy L MUST be co	Laboratories ontacted prior to
Lab provided preservatives were used ☐ Yes ☐ No				Other	8,	Sen	PH	-						ed	RUSH samp	ple submittal for
MINING CLIENTS, please indicate sample type, *If ore has been processed or refined, call before sending,			DW -	Drinking Water	8 W		>	1						Attached		id scheduling – 🥕 uctions Page
☐ Byproduct 11 (e)2 material ☐ Unprocessed ore (NO	T ground or refir	ned)*		6	TAL	立	-0	er.							2	
Sample Identification	Collec		Number of	Matrix	Z W	100	=	3						See		I LAB ID
(Name, Location, Interval, etc.)	Date	Time	Containers	(See Cades Above)	1325	ANA.	-	Č.						-	TAT Labor	ratory Use Only
12308112-LDF-1211	10/6/22	1015	/	0												
2 1 66122	The same	1020	4	0												
3 (38223	f .	1025	1	0												
4 573,722	1	1030	1	0												
5 75		1040	1	0												
6		1045	1	a												
7		1050	1	0												
8 1 17 8		1110	1	0												
9 7 79	V	1130	1	0												
10 V 30	V	1200	1	1												
	e/Time	Signa	ture		-	Rec	eived by (p	rint)			Date	/Time			Signature	
Record MUST / S/UF / C/C/C/ 100	6/27 /4/	00							ma (maint)			/Time			Signature	
be signed Refinquished by (print) Date	e/ i ime	Signa	ture	14505	ATORY		eived by L	aporatoi	A (buur)		Date	a rime			oigliatule.	
Shipped By Cooler ID(s) Custody Seals	Intact	Receipt Tem	p Tem	p Blank	On Ice	SE ONL	1	Payme	ent Type	7		Amount		Rece	eipt Number (cash/cl	heck only)
Y N C B	YN	°C		N	Y N	С	C Ca	sh (6				

Project: Samaritan House Location: Kalispell, Montana Project #: 220512.1 Phase 04 Personnel: Brent Merritt Date: 10/34/22

Equipment: Viken PB200i XRF Lead Paint Analyzer

Maint Aldy - Guringe

@ 1400

1CM

Read #	Substrate	Component Color	Location	Condition	Result
	Colb 1	Calstrip 11/	0.8 -1.2 pass	Cal Strap	(,0
2	Callo 2	X			6.1
3	Ca 14 3			V	1,0
log	M	DO jaul	GA BA INT	9	011
>5	M	05	RED GA BA EXT	/	8.5
-	1	53	WHT " " IHT		0,5
7	cho muc	WA	WHT GA BA INT		0.5
76	11	WA	11 11 11 11		0.4
7 9	PVC	PIPE	11 11 11	V	0.0
- 10		DO TON	GA SOUTH SIDE EX	T G	0.4
A. T.	M	WF Jah	GA 11 11 11	factor	0.1
- 12	M GANNO	E THITTANK	GA WSIDE TAN	Faded	0.2
13	M	BLK	th the fire		1.5
14	M	yellow	11 11 11	V	1.2
15	M	TON	main garage book	6	
16	CIMPIK	WA fan	HSIDE SKT		.5
1-1	m	too fan	N SIDE EXT		.5
81	M	WF Jall	E SIDE EXT	fodeel	12
10	M		Peters	9	0.7
70	M	DF you	- 11	6	0.6

Substrate: W = Wood P = Plaster G = Gypsum B = Brick M = Metal S = Stucco V = Vinyl C = Concrete

Z | CINBLE WA TAN EAST WALL EXT

Components:

WN	Window	DO	Door	WA	Wall	FL	Floor	HT	Heater	
WS	Window Sill	DF	Door Frame	SK	Sink	СВ	Cove Base	RD	Radiator	
WT	Window Trough	DJ	Door Jamb	то	Toilet	со	Column	AC	Air Cond	Y.
WF	Window Frame	CE	Ceiling	ВТ	Bathtub	SR	Stair Riser	FP	Fireplace	
GU	Gutter	so	Soffit	CA	Cabinet	ST	Stair Tread	CM	Crown Mold	11.7
DS	Downspout	FA	Fascia	SH	Shelf	HR	Handrail			

Location:

INT	Interior	BR#	Bedroom	KI	Kitchen	GA	Garage	
EXT	Exterior	ВА	Bathroom	PA	Pantry	СР	Carport	
AT	Attic	CL	Closet	LN	Laundry Room	SP	Shop	
BM	Basement	LR	Living Room	MU	Mud Room	SD	Shed	

Condition: CR = Cracking CP= Chipping PL = Peeling CH = Chalking FL = Flaky

1,031V8

Page 2 of Z

Project: Samaritan House
Location: Kalispell, Montana
Project #: 220512.1 Phase 04

Personnel: Brent Merritt

Date: 10/4

Equipment: Viken PB200i XRF Lead Paint Analyzer

Maint Blog

GA S

							ii .
Read #	Substrate	Component	Color	Location	Condition	Result	
2-2	M	76	BY	Bollom slat GRANT DOOR	4000	1.4	INT
23	N	DO	yel	1, 11 1, 1)	G	2.2	INT
24	M	PIPE	BIL	HVAC SSIDE IN	G	0,1	
25	M	l.	yd	es a de de	6	1.1	
26	CINTIK	WA	jan	Swall INT	6	0.0	
7-1	STYPSOM	WA	WHY	By office DOOR	6	0.1	
28	11	WA	-17	STRIRWAY	6	0.0	
29	M	ROOF	Tan	CEILING - THERE 13	UNDERNEMTH	12,2	
30	M	1)	M	4)	1)	9.8	
~3	M	CE	Tan	GA	6	0,0	
** 2	CIN BIK	WA -	ian	GAN INT	9	0,1	
3.3	GIVP	WA	MAUI	IE GAEINT	G	0.0	
34	Cal RTAI	1125	1/			1.0	
35	(X	X	\times	1.0	1100
36	- 1	1	1		/ ~	110	
					19		

Substrate: W = Wood P = Plaster G = Gypsum B = Brick M = Metal S = Stucco V = Vinyl C = Concrete

Components:

	, o c									
WN	Window	DO	Door	WA	Wall	FL	Floor	HT	Heater	
WS	Window Sill	DF	Door Frame	SK	Sink	СВ	Cove Base	RD	Radiator	
WT	Window Trough	DJ	Door Jamb	ТО	Toilet	со	Column	AC	Air Cond	
WF	Window Frame	CE	Ceiling	ВТ	Bathtub	SR	Stair Riser	FP	Fireplace	
GU	Gutter	so	Soffit	CA	Cabinet	ST	Stair Tread	СМ	Crown Mold	
DS	Downspout	FA	Fascia	SH	Shelf	HR	Handrail			

Location:

INT	Interior	BR#	Bedroom	KI	Kitchen	GA	Garage	
EXT	Exterior	ВА	Bathroom	PA	Pantry	СР	Carport	
AT	Attic	CL	Closet	LN	Laundry Room	SP	Shop	
ВМ	Basement	LR	Living Room	ΜU	Mud Room	SD	Shed	

Condition: CR = Cracking CP= Chipping PL = Peeling CH = Chalking FL = Flaky

1651

13

NORTH WING

1.0 AUS

Project: Samaritan House
Location: Kalispell, Montana

Project #: 220512.1 Phase 04

Personnel: Brent Merritt

Date: 10/0 **5**

Equipment: Viken PB200i XRF Lead Paint Analyzer

1625

Read #	Substrate	Component	Color	Location	Condition	Result
1	Calb	1	1		,	1,0
2						110
3	V	/				1,0
4	FIBROUS WAll	WA	MART	EAST CHO SHOOTING BAG	6	0.0
5	Ce	FL	į t	-11 1) 1)	CP	0.1
6	Ce	WA	11	" " " South wall	G	0.3
	Ce	WA	1)	MIDDLE H WALL	FL	6.5
8	Me	-	1PM)	GUN REACH SUPPORT	6	0,3
O	Me	DJ	ME	SHOOT and SNTRY	6	0.1
10	Me	000	BUM	11 11	6	0.1
- 11	61	W/A	ran	Assembly Hall North	G	0.1
12	Cny	WA	Ħ	11 11 EAST	67	0.1
13	Me	DJ	1)	11 11	6	0.1
16/	Me	70	11	1 1 1	6	0.0
15	GIY	WA	1)	11 11 580741	6	0,2
16	Mé	70	N q	11 11 11 VANH DOOR	6	015
17	Ce	WA	SRH	ARMS VOULT SOUTH	9	013
18	(11 11 WEST	6	0.2
19	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	11 4 North	/	0.4
10	me	DJ.	1011	11	1	014
21	Gy	WA	WD	Asmbly 12M west		011
22	me	DO	Tan	RANGE STORME	V	011

Substrate: W = Wood P = Plaster G = Gypsum B = Brick M = Metal S = Stucco V = Vinyl C = Concrete

Components:

WN	Window	DO	Door	WA	Wall	FL	Floor	HT	Heater	
ws	Window Sill	DF	Door Frame	SK	Sink	СВ	Cove Base	RD	Radiator	
WT	Window Trough	DJ	Door Jamb	TO	Toilet	СО	Column	AC	Air Cond	
WF	Window Frame	CE	Ceiling	ВТ	Bathtub	SR	Stair Riser	FP	Fireplace	
GU	Gutter	SO	Soffit	CA	Cabinet	ST	Stair Tread	СМ	Crown Mold	
DS	Downspout	FA	Fascia	SH	Shelf	HR	Handrail			

Location:

INT	Interior	BR#	Bedroom	Ki	Kitchen	GA	Garage	
EXT	Exterior	ВА	Bathroom	PA	Pantry	СР	Carport	
AT	Attic	CL	Closet	LN	Laundry Room	SP	Shop	7 7 1
вм	Basement	LR	Living Room	MU	Mud Room	SD	Shed	

Condition: CR = Cracking CP= Chipping PL = Peeling CH = Chalking FL = Flaky

0.1

Project: Samaritan House

Location: Kalispell, Montana

Project #: 220512.1 Phase 04

Personnel: Brent Merritt

Date:

Equipment: Viken PB200i XRF Lead Paint Analyzer

Read #	Substrate	Component	Color	Location	Condition	Result
23	GV	WΛ	GRN	RINGE STORAGE	4	013
24	Ce	WA	1,1	η //	G	0.0
25	GIY	CL	MHT	it it	6	0.2
76	Mé	DO	Tall	US CORTLIDOR MAIN	G	0.1
27	Ce	(L)A	SNYD	nh of st		0.0
28	11	- 01	ran	1 1		016
28	64	WA	WITT			0 1
3,0	Cory	WA	OFIK	U5 4		012
31	GY	WA	Jan	USI		0.2
32	City	WA	prk	US 3		012
*,3	1) !	tł.	WIH			0.1
54	11	1)	RED	" EAST		0.1
75	Bruck		MAN	WHSE WIRTH		010
2.60	TE.	FL	anny	witse - all	1	01/
7,~1	Giy	WA	ran	WHSE WEST		0.1
16	Mé	DI	GRAY	WHISE DOCK	1	0,0
39	Me		tan	1)		011
u0	Carly	WA	dive	Connivan		0.1
41	Cay	WA	WINT	\(\lambda\)	1	0.
42	ME	WA	uel	Krichen erreurtpanul		01)
43	Ce	WA	11	Kitchen scullery		01
44	Gry	WA	olive	Corninor		0()

Substrate: W = Wood P = Plaster G = Gypsum B = Brick M = Metal S = Stucco V = Vinyl C = Concrete 45 Tan

Components:									CONT OF	DAFL
WN	Window	DO	Door	WA	Wall	FL	Floor	HT	Heater	
WS	Window Sill	DF	Door Frame	SK	Sink	СВ	Cove Base	RD	Radiator	
WT	Window Trough	DJ	Door Jamb	ТО	Toilet	со	Column	AC	Air Cond	
WF	Window Frame	CE	Ceiling	ВТ	Bathtub	SR	Stair Riser	FP	Fireplace	
GU	Gutter	so	Soffit	CA	Cabinet	ST	Stair Tread	СМ	Crown Mold	
DS	Downspout	FA	Fascia	SH	Shelf	HR	Handrail	T		

Location:

INT	Interior	BR#	Bedroom	KI	Kitchen	GA	Garage	
EXT	Exterior	BA	Bathroom	PA	Pantry	СР	Carport	
AT	Attic	CL	Closet	LN	Laundry Room	SP	Shop	
ВМ	Basement	LR	Living Room	MU	Mud Room	SD	Shed	

Condition: CR = Cracking CP= Chipping PL = Peeling CH = Chalking FL = Flaky

XRF FIZLD SAMPLING FORM

Daily Field Activity Log

Project: SAMPITAN Louise

Personnel: BRENT MERRITT

Project #: 220 512

Other Forms:

Time	Description					
READ	SUBST	Komp 6	Color	Loc	CONO	RESULT
46	Cle	JANA !	Tan 1	DRINKING FOUNDIN	6	0.5
47	Me	DJ	11	TANITOR closer	Con	0.5
48	Me	05	ч	UNIT ADVISOR	4	0.6
49	Ce	WA	WHT	AR WHIT ADM	6	015
*50	Me	ワナ	olive	the contract of	Con	017
51	(1)	I WA	sawd	Abmin	1	OI I
52	Ck	WA	TOU	, 1		014
53	Me	DO	И	11		0.5
54	me	D	WHY	MINS ISMURDOW		0.5
55	Ce	WA	MOVOON	classnoom 2		0.5
56	We	DO	Tan	49		0.4
57	Me	DI	1)	H		0.6
58	Cb	WA	LUM	Classroom		0.4
=,0	Me	100	TANBLU	11		0.5
C00	rle	Do	alle	Womans PATHROOM		0,0
61	Me	り丁	1 1	£ #	\prod	0.1
67	Cb	WA	GRN	JANITORS closed	Π	015
C3	me	DJ	tan	NWI EAST old GIREGE D	portner	4 0.2
64	Me	see ?	Tay	WASH PLACE S UPPORT		0.1
65	Ce		1.1	11 11		0.3
66	Me	106	Tan	DOCK WEST SIDE		0,6
67	Me	bil	100	V II		0.6
68	Le	Dock	BARECEINER	SIMINING ON DOCK		0.4
69	Me	100	Tah	HEATING RM7	1.1	0.3
70	FABRUC		anh	FURNICE WARD &		012
7)	Me	HVAC	11	HVAC V		
Weather	T	+				
Visitors on S	Site		-		1	
7.5.1.5.1.5 (7) 5					1	

WGMGROUP
Community Values Inaptract Puturas

Finishing call Strots

Page / of /

Project: Samaritan House
Location: Kalispell, Montana
Project #: 220512.1 Phase 04

Personnel: Brent Merritt

Date: 10/6

Equipment: Viken PB200i XRF Lead Paint Analyzer

1100

Read #	Substrate	Component	Color	Location	Condition	Result	
	CALIS	-		1,64 wg/cm2	018 - 1,2 = pa\$5	019	
7	(September of the septem				0.9	931
	V				1	110	
4	metal	BIAR	3/84	SHOOTING POINTE	6	03	
5	me	Plenurs	ŧ	ENST SHO	\$	0.4	
8	wowo	minn	Californ			0.0	
7	Me	Grati	WHIT	V	V	0.)	
8	Soils			EAST	NA	0,2	
9				W55+1	Ċ	0.3	
10	V			W7572		0.1	
11	calb		1		* /	1,0], _7
12	C					1.0	1.03 4
13	J.	/ /				1.]	
		1		SHEETER			
						,	

Substrate: W = Wood P = Plaster G = Gypsum B = Brick M = Metal S = Stucco V = Vinyl C = Concrete

Components:

WN	Window	DO	Door	WA	Wall	FL	Floor	HT	Heater	
WS	Window Sill	DF	Door Frame	SK	Sink	СВ	Cove Base	RD	Radiator	
WT	Window Trough	DJ	Door Jamb	ТО	Toilet	со	Column	AC	Air Cond	
WF	Window Frame	CE	Ceiling	ВТ	Bathtub	SR	Stair Riser	FP	Fireplace	
GU	Gutter	so	Soffit	CA	Cabinet	ST	Stair Tread	СМ	Crown Mold	
DS	Downspout	FA	Fascia	SH	Shelf	HR	Handrail			

Location:

INT	Interior	BR#	Bedroom	KI	Kitchen	GA	Garage	
EXT	Exterior	ВА	Bathroom	PA	Pantry	СР	Carport	
AT	Attic	CL	Closet	LN	Laundry Room	SP	Shop	
BM	Basement	LR	Living Room	MU	Mud Room	SD	Shed	

Condition: CR = Cracking CP= Chipping PL = Peeling CH = Chalking FL = Flaky

PLM REPORT

Testing

214-351-4441 questmicro@gmail.com

TDSHS License No. 30-0218

Lab No. 200249-0

Client: WGM Group, Inc.

Project: Samaritan House, South Wing (SWI)

Project No.: 220512.1

Request No.: 33851 Report Date: 10/14/22 Sample Date: 10/5/22

Identification: Polarized Light Microscopy/Dispersion Staining (PLM/DS)

Test Method: 40 CFR, Part 763, Appendix E to Subpart E

On 10/12/2 for PLM/DS	,	ed by Brent Merritt of WGM G	Group
Client No	o. Sample Description	Fibrous Components	Asbestos Content
SWI-FT1- A	12"x12" White Floor Tile with Gray Swipe Pattern (A) and Black Mastic (B), Corridor North	None	A) None Detected B) 5% Chrysotile
SWI-FT1- B	12"x12" White Floor Tile with Gray Swipe Pattern (A) and Black Mastic (B), Corridor West	None	A) None Detected B) 5% Chrysotile
SWI-FT1- C	12"x12" White Floor Tile with Gray Swipe Pattern (A) and Black Mastic (B), Admin #1	None	A) None Detected B) 5% Chrysotile
SWI- DJT1-A	Wallboard: White Paint (A), White Smooth Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and White Drywall (F), Corridor North	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected
SWI- DJT1-B	Wallboard: White Paint (A), White Smooth Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and White Drywall (F), Corridor West	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected
SWI- DJT1-C	Wallboard: White Paint (A), White Smooth Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and White Drywall (F), Corridor East	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected
SWI- DJT2-A	Ceiling Board: White Paint (A), White Blob Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and White Drywall (F), Corridor Ceiling North	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected

SWI- DJT2-B	Wallboard: White Paint (A), White Blob Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and White Drywall (F), Corridor by Exit Door	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected IE) None Detected
			F) None Detected
SWI- DJT2-C	Wallboard: White Paint (A), White Blob Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and White Drywall (F), Corridor South	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected
SWI- CT1-A	White Paint (A) on 2'x4' Gray Pinhole and Fissure Pattern Ceiling Tile (B), Corridor	B) 40% Fiberglass 30% Cellulose 20% Perlite	A) None Detected B) None Detected
SWI- CT1-B	White Paint (A) on 2'x4' Gray Pinhole and Fissure Pattern Ceiling Tile (B), Admin #1	B) 40% Fiberglass 30% Cellulose 20% Perlite	A) None Detected B) None Detected
SWI- CT1-C	White Paint (A) on 2'x4' Gray Pinhole and Fissure Pattern Ceiling Tile (B), Classroom 2	B) 40% Fiberglass 30% Cellulose 20% Perlite	A) None Detected B) None Detected
SWI-FT2- A	12"x12" Orange Floor Tile (A) with Black Mastic (B), Unit Advisor Room	None	A) None Detected B) 5% Chrysotile
SWI-FT2- B	12"x12" Orange Floor Tile (A) with Black Mastic (B), Corridor	None	A) None Detected B) 5% Chrysotile
SWI-FT2- C	12"x12" Orange Floor Tile (A) with Black Mastic (B), Corridor	None	A) None Detected B) 5% Chrysotile
SWI-FT3- A	12"x12" Beige Floor Tile with Tan Flake Pattern (A) and Black Mastic (B), Classroom 2	B) 5% Cellulose	A) None Detected B) None Detected
SWI-FT3- B	12"x12" Beige Floor Tile with Tan Flake Pattern (A) and Black Mastic (B), Corridor by Admin #1	B) 5% Cellulose	A) None Detected B) None Detected
SWI-FT3- C	12"x12" Beige Floor Tile with Tan Flake Pattern (A) and Black Mastic (B), Corridor by Exit to South Sign	B) 5% Cellulose	A) None Detected B) None Detected
SWI- CT2-A	White Paint (A) on 2'x4' Gray Batwing Fissure Pattern Ceiling Tile (B), Corridor by Admin #1	B) 40% Cellulose 30% Fiberglass 20% Perlite	A) None Detected B) None Detected
SWI- CT2-B	White Paint (A) on 2'x4' Gray Batwing Fissure Pattern Ceiling Tile (B), Corridor by Admin #1	B) 40% Cellulose 30% Fiberglass 20% Perlite	A) None Detected B) None Detected
SWI- CT2-C	White Paint (A) on 2'x4' Gray Batwing Fissure Pattern Ceiling Tile (B), Corridor by Admin #1	B) 40% Cellulose 30% Fiberglass 20% Perlite	A) None Detected B) None Detected
SWI- CT3-A	White Paint (A) on 2'x4' Gray Mostly Pinhole Pattern Ceiling Tile (B), Corridor by Exit to South Sign	B) 40% Fiberglass 30% Perlite 20% Cellulose	A) None Detected B) None Detected
SWI- CT3-B	White Paint (A) on 2'x4' Gray Mostly Pinhole Pattern Ceiling Tile (B), Corridor by Exit to South Sign	B) 40% Fiberglass 30% Perlite 20% Cellulose	A) None Detected B) None Detected

		1	
SWI-	White Paint (A) on 2'x4' Gray Mostly	B) 40% Fiberglass	A) None Detected
CT3-C	Pinhole Pattern Ceiling Tile (B), Corridor by	30% Perlite	B) None Detected
	Exit to South Sign	20% Cellulose	
SWI-	Brown Vinyl Cove Base (A) with Brown	B) 5% Wollastonite	A) None Detected
CB1-A	Mastic (B), Corridor by East Entrance		B) None Detected
SWI-	Brown Vinyl Cove Base (A) with Brown	B) 5% Wollastonite	A) None Detected
CB1-B	Mastic (B), Classroom 2	·	B) None Detected
SWI-	Brown Vinyl Cove Base (A) with Brown	B) 5% Wollastonite	A) None Detected
CB1-C	Mastic (B), Admin #1	2,0000000000000000000000000000000000000	B) None Detected
SWI-	White Paint (A) on 12"x12" Gray Texture	B) 70% Fiberglass	A) None Detected
CT4-A	Pattern Ceiling Tile (B), above Drop Ceiling	20% Perlite	B) None Detected
01471	in Classroom 2	2% Cellulose	b) None Detected
SWI-	White Paint (A) on 12"x12" Gray Texture	B) 70% Fiberglass	A) None Detected
CT4-B	Pattern Ceiling Tile (B), above Drop Ceiling	20% Perlite	B) None Detected
C14-D	in Classroom 2	2% Cellulose	D) None Detected
CVA/I			A) None Detected
SWI-	White Paint (A) on 12"x12" Gray Texture	B) 70% Fiberglass 20% Perlite	A) None Detected
CT4-C	Pattern Ceiling Tile (B), above Drop Ceiling		B) None Detected
CVA/I	in Classroom 2	2% Cellulose	A) Nieus Dutat i
SWI-	Pipe Wrap: Brown Sealant (A), Off-White	A) 2% Synthetic	A) None Detected
PW1-A	Mastic (B), White Paper (C), White Loose	C) 98% Cellulose	B) None Detected
	Weave (D), Silver Foil (E) and Yellow	D) 100% Fiberglass	C) None Detected
	Insulation (F), Classroom 2	F) 99% Fiberglass	D) None Detected
			E) None Detected
		1	F) None Detected
SWI-	2"x2" Gray Ceramic Tile (A) with Gray	None	A) None Detected
CTG1-A	Grout (B), Men's Bathroom		B) None Detected
SWI-	2"x2" Gray Ceramic Tile (A) with Gray	None	A) None Detected
CTG1-B	Grout (B), Men's Bathroom		B) None Detected
SWI-	2"x2" Gray Ceramic Tile (A) with Gray	None	A) None Detected
CTG1-C	Grout (B), Men's Bathroom		B) None Detected
SWI-	4"x4" Blue Ceramic Tile (A) with White	None	A) None Detected
CTG2-A	Grout (B) and Cream Mastic (C), Men's		B) None Detected
	Bathroom		C) None Detected
SWI-	4"x4" Blue Ceramic Tile (A) with White	None	A) None Detected
CTG2-B	Grout (B) and Cream Mastic (C), Men's		B) None Detected
	Bathroom		C) None Detected
SWI-	4"x4" Blue Ceramic Tile (A) with White	None	A) None Detected
CTG2-C	Grout (B) and Cream Mastic (C), Men's	110110	B) None Detected
0.020	Bathroom		C) None Detected
	Water Heater Pipe Wrap: Light Green	B) 98% Cellulose	A) None Detected
S/V/I_		D) 30 /0 Cellulose	A None Detected
SWI- DW2-A		C) 100% Fiberglass	,
	Paint (A), White Paper (B), White Loose	C) 100% Fiberglass	B) None Detected
	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow	C) 100% Fiberglass E) 99% Fiberglass	B) None Detected C) None Detected
	Paint (A), White Paper (B), White Loose		B) None Detected C) None Detected D) None Detected
PW2-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room	E) 99% Fiberglass	B) None Detected C) None Detected D) None Detected E) None Detected
PW2-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room	E) 99% Fiberglass B) 98% Cellulose	B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected
PW2-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room Pipe Wrap from 4" Line: Light Green Paint (A), White Paper (B), White Loose Weave	E) 99% Fiberglass B) 98% Cellulose C) 100% Fiberglass	B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected B) None Detected
PW2-A SWI- PW3-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room Pipe Wrap from 4" Line: Light Green Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation	E) 99% Fiberglass B) 98% Cellulose	B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected B) None Detected C) None Detected
PW2-A SWI- PW3-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room Pipe Wrap from 4" Line: Light Green Paint (A), White Paper (B), White Loose Weave	E) 99% Fiberglass B) 98% Cellulose C) 100% Fiberglass	B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected B) None Detected C) None Detected D) None Detected
PW2-A SWI- PW3-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room Pipe Wrap from 4" Line: Light Green Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room	E) 99% Fiberglass B) 98% Cellulose C) 100% Fiberglass E) 99% Fiberglass	B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected
SWI- PW3-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room Pipe Wrap from 4" Line: Light Green Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room Pipe Wrap from 4" Line: Light Green Paint	E) 99% Fiberglass B) 98% Cellulose C) 100% Fiberglass E) 99% Fiberglass B) 98% Cellulose	B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected A) None Detected
PW2-A SWI- PW3-A	Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room Pipe Wrap from 4" Line: Light Green Paint (A), White Paper (B), White Loose Weave (C), Silver Foil (D) and Yellow Insulation (E), Heating Room	E) 99% Fiberglass B) 98% Cellulose C) 100% Fiberglass E) 99% Fiberglass	B) None Detected C) None Detected D) None Detected E) None Detected A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected E) None Detected

	(E), Heating Room		D) None Detected E) None Detected
SWI-	Off-White Elbow Insulation from Water	15% Mineral Wool	None Detected
EB1-A	Heater, Heating Room		
SWI-	Elbow by Top of Door: Light Green Paint	B) 90% Cotton	A) None Detected
EB2-A	(A), White Wrap (B) and Off-White	C) 15% Mineral Wool	B) None Detected
	Insulation (C), Water Heater Room		C) None Detected
SWI-	Elbow from Totalizer in NW Corner: Light	C) 99% Fiberglass	A) None Detected
EB3-A	Green Paint (A), White Plastic Cover (B)	, a	B) None Detected
,	and Yellow Insulation (C), Heating Room		C) None Detected

The EPA test method for bulk analysis (EPA/600/R-93/116) states in paragraph 2.2.2. that "the detection limit for visual estimation is a function of the quantity of the sample analyzed, the nature of matrix interference, sample preparation, and fiber size and distribution. Asbestos may be detected in concentrations of less than one percent by area if sufficient material is analyzed. Samples may contain fibers too small to be resolved by PLM (<0.25 micrometers in diameter) so detection of those fibers by this method may not be possible."

Samples are analyzed by layers, and percentages estimated visually during microscopic examination. Individual analysis sheets available upon request. Results may not be reproduced except in full. This test report relates only to the samples tested, and results must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Materials containing >1% asbestos are considered by the EPA to be asbestos containing materials, and must be handled as

Analyst: Jennifer Jaber

such.

Lab Director: Jennifer D. Jaber Approved Signatory :

PLM REPORT

Testing

214-351-4441 questmicro@gmail.com

TDSHS License No. 30-0218

Lab No. 200249-0

Client: WGM Group, Inc.

Project: Samaritan House Phase II ESA, Garage

Project No.: 220512.1

Request No.: 33852 Report Date: 10/13/22

Sample Date: 10/04/22

Identification: Polarized Light Microscopy/Dispersion Staining (PLM/DS)

Test Method: 40 CFR, Part 763, Appendix E to Subpart E

On 10/12/2022, 27 bulk material samples were submitted by Brent Merritt of WGM Group, Inc. for PLM/DS analysis. The results are outlined below:

Client N	o. Sample Description	Fibrous Components	Asbestos Content
GAR- CT1-A	White Paint (A) on Gray 2x4' Fissure and Dots Texture Ceiling Tile (B), Loft	B) 30% Cellulose 30% Fiberglass 30% Perlite	A) None Detected B) None Detected
GAR- CT1-B	White Paint (A) on Gray 2x4' Fissure and Dots Texture Ceiling Tile (B), Loft	B) 30% Cellulose 30% Fiberglass 30% Perlite	A) None Detected B) None Detected
GAR- CT1-C	White Paint (A) on Gray 2x4' Fissure and Dots Texture Ceiling Tile (B), Loft	B) 30% Cellulose 30% Fiberglass 30% Perlite	A) None Detected B) None Detected
GAR- DJT1-A	Wallboard: White Paint (A), White Splatter Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E), and White Drywall (F), Stairs to Loft	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected
GAR- DJT1-B	Wallboard: White Paint (A), White Splatter Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E), and White Drywall (F), Above Office Window	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected
GAR- DJT1-C	Wallboard: White Paint (A), White Splatter Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E), and White Drywall (F), by Office Door	C) 98% Cellulose E) 98% Cellulose F) 35% Gypsum 15% Fiberglass	A) None Detected B) None Detected C) None Detected D) None Detected E) None Detected F) None Detected
GAR- CB1-A	Gray Paint (A) on Gray Cinder Block (B) with Gray Mortar (C), North Wall Interior	None	A) None Detected B) None Detected C) None Detected
GAR- CB1-B	Gray Paint (A) on Gray Cinder Block (B) with Gray Mortar (C), South Wall Interior	None	A) None Detected B) None Detected C) None Detected

GAR- CB1-C	Gray Paint (A) on Gray Cinder Block (B) with Gray Mortar (C), East Wall Interior	None	A) None Detected B) None Detected C) None Detected
GAR- SC1-A	Gray Grout-Like Sealing Compound, Top of Door	None	None Detected
GAR- SC1-B	Gray Grout-Like Sealing Compound, Top of Door	None	None Detected
GAR- SC1-C	Gray Grout-Like Sealing Compound, Top of Door	None	None Detected
GAR- DC1-A	White Door Caulking, Exterior of Main Door	None	3% Chrysotile
GAR- DC1-B	White Door Caulking, Exterior of Main Door	None	3% Chrysotile
GAR- DC1-C	White Door Caulking, Exterior of Bathroom Door	None	3% Chrysotile
GAR- GL1-A	Gray Window Glazing, Exterior South Side, East Window	None	3% Chrysotile
GAR- GL1-B	Gray Window Glazing, Exterior South Side, East Window	None	3% Chrysotile
GAR- GL1-C	Gray Window Glazing, Exterior South Side, West Window	None	3% Chrysotile
GAR- BM1-A	Unpainted Orange Brick (A) with Gray Mortar (B), by Door on South Side Exterior	B) <1% Cellulose	A) None Detected B) None Detected
GAR- BM1-B	Unpainted Orange Brick (A) with Gray Mortar (B), NW Corner of Garage Exterior	B) <1% Cellulose	A) None Detected B) None Detected
GAR- BM1-C	Unpainted Orange Brick (A) with Gray Mortar (B), SE Corner of Garage Exterior	B) <1% Cellulose	A) None Detected B) None Detected
GAR- FT1-A	White with Light Flakes Pattern 12x12" Floor Tile (A) with Black Mastic (B), Garage Bathroom	B) <1% Cellulose	A) None Detected B) None Detected
GAR- FT1-B	White with Light Flakes Pattern 12x12" Floor Tile (A) with Black Mastic (B), Garage Bathroom	B) <1% Cellulose	A) None Detected B) None Detected
GAR- FT1-C	White with Light Flakes Pattern 12x12" Floor Tile (A) with Black Mastic (B), Garage Bathroom	B) <1% Cellulose	A) None Detected B) None Detected
GAR- VCB1-A	Brown Vinyl Cove Base (A) with Brown Mastic (B), Garage Bathroom	B) 5% Wollastonite	A) None Detected B) None Detected
GAR- VCB1-B	Brown Vinyl Cove Base (A) with Brown Mastic (B), Garage Bathroom	B) 5% Wollastonite	A) None Detected B) None Detected
GAR- VCB1-C	Brown Vinyl Cove Base (A) with Brown Mastic (B), Garage Bathroom	B) 5% Wollastonite	A) None Detected B) None Detected

The EPA test method for bulk analysis (EPA/600/R-93/116) states in paragraph 2.2.2. that "the detection limit for visual estimation is a function of the quantity of the sample analyzed, the nature of matrix interference, sample preparation, and fiber size and distribution. Asbestos may be detected in concentrations of less than one percent by area if sufficient material is analyzed. Samples may contain fibers too small to be resolved by PLM (<0.25 micrometers in diameter) so detection of those fibers by this method may not be possible."

Samples are analyzed by layers, and percentages estimated visually during microscopic examination. Individual analysis sheets available upon request. Results may not be reproduced except in full. This test report relates only to the samples tested, and results must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Materials containing >1% asbestos are considered by the EPA to be asbestos containing materials, and must be handled as

Analyst: Jennifer Jaber

Lab Director: Jennifer D. Jaber Approved Signatory :

PLM REPORT

Testing

214-351-4441 questmicro@gmail.com

TDSHS License No. 30-0218

submitted by Brent Merritt of WGM Group

20% Perlite

None

None

Lab No. 200249-0

None Detected

None Detected

Client: WGM Group, Inc.

Project: Samaritan House North Wing (NWI)

Project No.: 220512.1

52

for PLM/DS analysis. The results are outlined below:

Shooting Range West

Range East

Range Mid

Tan Skim Coat on North Wall, Shooting

Tan Skim Coat on North Wall, Shooting

On 10/12/22,

Request No.: 33853

Report Date: 10/14/22

Sample Date: 10/5/22

Identification: Polarized Light Microscopy/Dispersion Staining (PLM/DS)

Test Method: 40 CFR, Part 763, Appendix E to Subpart E

bulk material samples were

Client No. Sample Description Fibrous Components Asbestos Content NWI-12"x12" White Floor Tile with Beige Flakes C) 3% Cellulose A) None Detected FT1-A (A), Yellow Mastic (B) and Gray Mastic (C), B) None Detected Shooting Range East End C) None Detected NWI-12"x12" White Floor Tile with Beige Flakes C) 3% Cellulose A) None Detected FT1-B (A), Yellow Mastic (B) and Gray Mastic (C), B) None Detected Shooting Range East End C) None Detected NWI-12"x12" White Floor Tile with Beige Flakes C) 3% Cellulose A) None Detected FT1-C (A), Yellow Mastic (B) and Gray Mastic (C), B) None Detected Shooting Range East End C) None Detected NWI-White Paint (A) on 2'x4' Gray Pinhole B) 40% Cellulose A) None Detected Pattern Ceiling Tile (B), Shooting Range CT1-A 30% Fiberglass B) None Detected East End 20% Perlite NWI-White Paint (A) on 2'x4' Gray Pinhole B) 40% Cellulose A) None Detected CT1-B Pattern Ceiling Tile (B), Shooting Range 30% Fiberglass B) None Detected East End 20% Perlite NWI-White Paint (A) on 2'x4' Gray Pinhole B) 40% Cellulose A) None Detected CT1-C Pattern Ceiling Tile (B), Shooting Range 30% Fiberglass B) None Detected 20% Perlite East End NWI-White Paint (A) on 12"x12" Gray Pinhole B) 40% Cellulose A) None Detected B) None Detected CT2-A and Fissure Pattern Ceiling Tile (B), 30% Fiberglass Shooting Range East 20% Perlite A) None Detected NWI-White Paint (A) on 12"x12" Gray Pinhole B) 40% Cellulose CT2-B and Fissure Pattern Ceiling Tile (B), 30% Fiberglass B) None Detected Shooting Range Mid 20% Perlite NWI-White Paint (A) on 12"x12" Gray Pinhole B) 40% Cellulose A) None Detected CT2-C and Fissure Pattern Ceiling Tile (B), 30% Fiberglass B) None Detected

NWI-

NWI-

SKM1-A

SKM1-B

NWI-	Tan Skim Coat on North Wall, Shooting	None	None Detected
SKM1-C	Range West		
NWI-	Tan Skim Coat on North Wall, Shooting	None	None Detected
SKM1-D	Range Mid East		1
NWI-	Tan Skim Coat on North Wall, Shooting	None	None Detected
SKM1-E	Range Mid West		
NWI-	12"x12" Tan Floor Tile with Dark Flakes (A)	B) 3% Cellulose	A) None Detected
FT2-A	and Black Mastic (B), Assembly Hall NE		B) None Detected
NWI-	12"x12" Tan Floor Tile with Dark Flakes (A)	B) 3% Cellulose	A) None Detected
FT2-B	and Black Mastic (B), Assembly Hall SW		B) None Detected
NWI-	12"x12" Tan Floor Tile with Dark Flakes (A)	B) 3% Cellulose	A) None Detected
FT2-C	and Black Mastic (B), Unit Storage 2		B) None Detected
NWI-	Brown Vinyl Cove Base (A) with Yellow	None	A) None Detected
CB1-A	Mastic (B), Assembly Hall NE		B) None Detected
NWI-	Brown Vinyl Cove Base (A) with Yellow	None	A) None Detected
CB1-B	Mastic (B), Unit Storage Hallway		B) None Detected
NWI-	Brown Vinyl Cove Base (A) with Yellow	None	A) None Detected
CB1-C	Mastic (B), Unit Storage 2		B) None Detected
NWI-	Wallboard: Beige Paint (A), White Texture	C) 98% Cellulose	A) None Detected
DJT1-A	(B), White Tape (C), White Joint	E) 98% Cellulose	B) None Detected
	Compound (D), Tan Paper (E) and Pink	F) 40% Gypsum	C) None Detected
	Drywall (F), Assembly Hall North Wall, East	10% Fiberglass	D) None Detected
	End		E) None Detected
N IVA/I	Mallhaand Daine Daint (A) Mhita Tautun	(C) 000/ C-II-I	F) None Detected
NWI- DJT1-B	Wallboard: Beige Paint (A), White Texture (B), White Tape (C), White Joint	C) 98% Cellulose E) 98% Cellulose	A) None Detected B) None Detected
ם-ו ונטן	Compound (D), Tan Paper (E) and Pink	F) 40% Gypsum	C) None Detected
	Drywall (F), Assembly Hall South Wall	10% Fiberglass	D) None Detected
	Drywan (1), Assembly Han Count Wan	1070 Tibergiass	E) None Detected
			F) None Detected
NWI-	Wallboard: White Paint (A), White Texture	C) 98% Cellulose	A) None Detected
DJT1-C	(B), White Tape (C), White Joint	E) 98% Cellulose	B) None Detected
,	Compound (D), Tan Paper (E) and Pink	F) 40% Gypsum	C) None Detected
	Drywall (F), Range Storage Room	10% Fiberglass	D) None Detected
		,	E) None Detected
			F) None Detected
NWI-	Wallboard: White Paint (A), White Texture	C) 98% Cellulose	A) None Detected
DJT1-D	(B), White Tape (C), White Joint	E) 98% Cellulose	B) None Detected
	Compound (D), Tan Paper (E) and Pink	F) 40% Gypsum	C) None Detected
	Drywall (F), Unit Storage 5, West Wall	10% Fiberglass	D) None Detected
			E) None Detected
	1	Tax 220/ 2 !! :	F) None Detected
NWI-	Wallboard: White Paint (A), White Texture	C) 98% Cellulose	A) None Detected
DJT1-E	(B), White Tape (C), White Joint	E) 98% Cellulose	B) None Detected
	Compound (D), Tan Paper (E) and Pink	F) 40% Gypsum	C) None Detected
	Drywall (F), Unit Storage 4, South Wall	10% Fiberglass	D) None Detected
			E) None Detected F) None Detected
NIVA/I	Wellboard: White Deint (A) White Texture	C) 000/ Callulana	
NWI-	Wallboard: White Paint (A), White Texture	C) 98% Cellulose	A) None Detected
DJT1-F	(B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink	E) 98% Cellulose F) 40% Gypsum	B) None Detected C) None Detected
	Drywall (F), Unit Storage 2, South Wall	10% Fiberglass	D) None Detected
	15. J. Hall (1), O'lle Glorage 2, Goden Wall	1070 1 Iborgiass	E) None Detected
Page 2 of 4	Lab Request No. 33853		

Name				F) None Detected
DJT1-G (B), White Tape (C), White Joint (Compound (D), Tan Paper (E) and Pink (Drywall (F), Unit Storage 1, North Wall (F) 40% Gypsum (10% Fiberglass) (C) None Detected (E) None (E) None (E) None (E) None Detected (E) None Detected (E) None (E) None (E) None Detected (E) None Detected (E) None (E) None (E) None Detected (E) None Detected (E) None (E) None Detected (E) None Detected (E) None (E) None Detected (E) None Detected (E) None Detected (E) None (E) None Detected (E) None (E) None (E) None (E) None (E) None Detected (E)	NWI-	Wallboard: White Paint (A), White Texture	C) 98% Cellulose	A) None Detected
Compound (D), Tan Paper (E) and Pink Drywall (F), Unit Storage 1, North Wall 10% Fiberglass 10% Fibe	DJT1-G			
Drywall (F), Unit Storage 1, North Wall 10% Fiberglass D) None Detected E) None Detected SKM2-A Will White Skim Coat, Arms Vault, Suth Wall None None Detected None De	,		F) 40% Gypsum	,
E None Detected F None Detected None				
White Skim Coat, Arms Vault, West Wall None None Detected			,	
SKM2-A NWI- SKIM Coat, Arms Vault, South Wall None None Detected				F) None Detected
SKM2-B NWI- Skim Coat, Arms Vault, North Wall None None Detected		White Skim Coat, Arms Vault, West Wall	None	None Detected
NWI-SKM2-C		White Skim Coat, Arms Vault, South Wall	None	None Detected
NWI- CB1-A Unit Storage 2		White Skim Coat, Arms Vault, North Wall	None	None Detected
CB1-A Unit Storage 2 B) None Detected		Gray Cinderblock (A) with Gray Mortar (B)	None	A) None Detected
NWI- CB1-B			140110	
CB1-B			None	
NWI- CB1-C Unit Storage 5 None A) None Detected B) None De			146116	,
CB1-C Unif Storage 5 B) None Detected			None	
NWI-FT3-A 12"x12" Gray Floor Tile with Darker Gray Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-B Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-B Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-B Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), White Tape (C), White Joint Drywall (F), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Office NWI-FT3-C Flakes (A) and Black Mastic (B), Warehouse Ceiling None Detected Drywall (F), Warehouse Ceiling None Detected Drywall (F), Warehouse East Wall None Detected Drywall (F), Warehouse South Wall None Detecte			140110	,
FT3-A			B) 2% Cellulose	
Warehouse Office NWI- 12"x12" Gray Floor Tile with Darker Gray Warehouse Office NWI- 12"x12" Gray Floor Tile with Darker Gray Warehouse Office NWI- 12"x12" Gray Floor Tile with Darker Gray B) 2% Cellulose A) None Detected B) None Detected D) None Detect		,	D) 270 Gendiose	
FT3-B	1. 10 /			B) Itolio Bolodod
FT3-B	NWI-	12"x12" Gray Floor Tile with Darker Gray	B) 2% Cellulose	A) None Detected
Warehouse Office NWI- 12"x12" Gray Floor Tile with Darker Gray Flakes (A) and Black Mastic (B), Warehouse Office NWI- Ceiling Board: White Paint (A), White Texture C) 98% Cellulose B) None Detected D) Non	FT3-B		,	
FT3-C Flakes (A) and Black Mastic (B),	-			
FT3-C Flakes (A) and Black Mastic (B), Warehouse Office Warehouse Office	NWI-	12"x12" Gray Floor Tile with Darker Gray	B) 2% Cellulose	A) None Detected
NWI-DJT2-A (B), White Paint (A), White Texture (B), White Tape (C), White Joint (Compound (D), Tan Paper (E) and Pink (D) Wall (F), Warehouse Office (E) 98% Cellulose (E) None Detected (E) N	FT3-C			
DJT2-A (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Office Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Office DJT2-B Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall Drywall (F), Warehouse South Wall Dryw		Warehouse Office		•
Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Office D None Detected D None Dete	NWI-	Wallboard: White Paint (A), White Texture	C) 98% Cellulose	A) None Detected
Drywall (F), Warehouse Office Drywall (F), Warehouse Office 10% Fiberglass D) None Detected E) Swarehouse Ceiling E) 98% Cellulose E) 98% Cellulose E) None Detected E) 98% Cellulose E) 98% Cellulose E) 98% Cellulose E) 98% Cellulose E) None Detected E)	DJT2-A	(B), White Tape (C), White Joint		B) None Detected
NWI-DJT2-B Ceiling Board: White Paint (A), White Texture (B), White Tape (C), White Joint Drywall (F), Warehouse Ceiling Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Compound (D), Tan Paper (E), Warehouse South Wall (C) Pask Cellulose (Compound (D), Tan Paper (E), Warehouse South Wall (C) Pask Cellulose (C) None Detected (C) None Detected (C) N			1 '	
NWI-DJT2-B Ceiling Board: White Paint (A), White DJT2-B Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling Compound (D), Tan Paper (E) and Pink DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall DWI-DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall C) None Detected D) None Detected D		Drywall (F), Warehouse Office	10% Fiberglass	
NWI-DJT2-B Ceiling Board: White Paint (A), White Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling NWI-DJT2-C (B), White Paint (A), White Texture Compound (D), Tan Paper (E) and Pink DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall NWI-DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall NWI-DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall NWI-DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall NWI-DJT2-D (Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall NWI-DJT2-D (C) 98% Cellulose E) 98% Cellulose E) 98% Cellulose B) None Detected C) None				,
DJT2-B Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling DJT2-B Compound (D), Tan Paper (E) and Pink DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall DJT2-C (B), White Tape (C), White Joint Drywall (F), Warehouse East Wall				
Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse Ceiling Town on the Detected D) None Detected D) None Detected D) None Detected E) Possible Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall D) None Detected E) E) None Detected E) None Detecte				
Drywall (F), Warehouse Ceiling 10% Fiberglass D) None Detected E) Swarehouse East Wall E) 98% Cellulose E) 98% Cellulose E) None Detected E) None Det	DJT2-B			
NWI- DJT2-C (B), White Tape (C), White Joint Drywall (F), Warehouse East Wall Wallboard: White Paint (A), White Texture (B), White Tape (C), White Joint Drywall (F), Warehouse East Wall Wallboard: White Paint (A), White Texture (B), White Tape (C), White Joint Drywall (F), Warehouse East Wall Wallboard: White Paint (A), White Texture (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Drywall (F), Warehouse South Wall E) None Detected D) None Detected			F) 40% Gypsum	
NWI- DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall NWI- DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall NWI- DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall NWI- DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall NONE Detected E) None Detected D) None Detected D) None Detected D) None Detected D) None Detected E) None Detected D) None Detected E) None De		Drywall (F), Warehouse Ceiling	10% Fiberglass	
NWI-DJT2-C Wallboard: White Paint (A), White Texture (B), White Tape (C), White Joint (Compound (D), Tan Paper (E) and Pink (Drywall (F), Warehouse East Wall (E) 98% Cellulose (E) 98% Cellulose (E) None Detected (E) None Detect				
DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall NWI- Wallboard: White Paint (A), White Texture DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall DJT2-C (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall E) 98% Cellulose F) 40% Gypsum Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall E) 98% Cellulose E) 98% Cellulose C) None Detected C) None Detect	N N A //	100 HI	0) 000/ 0 # 1	
Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse East Wall NWI- DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall (C) None Detected (E) None Detected (B) None Detected (C) None Detected (E) None Detected				
Drywall (F), Warehouse East Wall Drywall (F), Warehouse East Wall 10% Fiberglass D) None Detected E) None Detected E) None Detected E) None Detected NWI- Wallboard: White Paint (A), White Texture C) 98% Cellulose A) None Detected B) None Detected E) 98% Cellulose B) None Detected E) None Detected C) None Detected D) None Detected D) None Detected E) None	IDJ 12-C		,	,
NWI- DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall E) None Detected C) 98% Cellulose E) 98% Cellulose E) 98% Cellulose E) 98% Cellulose F) 40% Gypsum C) None Detected D) None Detected E) None Detected E) None Detected E) None Detected E) None Detected				
NWI- DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall F) None Detected C) 98% Cellulose E) 98% Cellulose F) 40% Gypsum C) None Detected D) None Detected D) None Detected E) None Detected E) None Detected E) None Detected		priywaii (F), warenouse East waii	10% riberglass	
NWI- DJT2-D (B), White Tape (C), White Joint Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall Wallboard: White Paint (A), White Texture (C) 98% Cellulose (E) 98% Cellulose (B) None Detected (C) None Detected (D) None Detected (E) None Detected (E) None Detected				
DJT2-D (B), White Tape (C), White Joint E) 98% Cellulose Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall 10% Fiberglass E) None Detected D) None Detected E) None Detected	NWI-	Wallboard: White Paint (A) White Texture	C) 98% Cellulose	
Compound (D), Tan Paper (E) and Pink Drywall (F), Warehouse South Wall F) 40% Gypsum D) None Detected D) None Detected D) None Detected E) None Detected				,
Drywall (F), Warehouse South Wall 10% Fiberglass D) None Detected E) None Detected	,		,	,
E) None Detected				,
		, , , , , , , , , , , , , , , , , , , ,		

NWI-	Wallboard: White Paint (A), White Texture	C) 98% Cellulose	A) None Detected
DJT2-E	(B), White Tape (C), White Joint	E) 98% Cellulose	B) None Detected
	Compound (D), Tan Paper (E) and Pink	F) 40% Gypsum	C) None Detected
	Drywall (F), Warehouse West Wall	10% Fiberglass	D) None Detected
			E) None Detected
			F) None Detected
NWI-	6"x6" Maroon Ceramic Tile (A) with Gray	None	A) None Detected
CTG1-A	Grout (B), Kitchen		B) None Detected
NWI-	6"x6" Maroon Ceramic Tile (A) with Gray	None	A) None Detected
CTG1-B	Grout (B), Kitchen		B) None Detected
NWI-	6"x6" Maroon Ceramic Tile (A) with Gray	None	A) None Detected
CTG1-C	Grout (B), Kitchen		B) None Detected
NWI-	4"x4" Green Ceramic Tile (A) with White	None	A) None Detected
CTG2-A	Grout (B), Kitchen		B) None Detected
NWI-	4"x4" Green Ceramic Tile (A) with White	None	A) None Detected
CTG2-B	Grout (B), Kitchen		B) None Detected
NWI-	4"x4" Green Ceramic Tile (A) with White	None	A) None Detected
CTG2-C	Grout (B), Kitchen		B) None Detected
NWI-	Light Green Paint (A), White Plastic Cover	C) 99% Fiberglass	A) None Detected
TSI1-A	(B) and Yellow Insulation (C), Kitchen		B) None Detected
			C) None Detected
NWI-	White Pipe Wrap (A) over Yellow Insulation	A) 90% Fiberglass	A) None Detected
TSI2-A	(B), Kitchen	B) 99% Fiberglass	B) None Detected
NWI-	Beige Fibrous Wall Material, East End	95% Cellulose	None Detected
FW1-A	Shooting Range		r
NWI-	Beige Fibrous Wall Material, East End	95% Cellulose	None Detected
FW1-B	Shooting Range		,
NWI-	Beige Fibrous Wall Material, East End	95% Cellulose	None Detected
FW1-C	Shooting Range		P

The EPA test method for bulk analysis (EPA/600/R-93/116) states in paragraph 2.2.2. that "the detection limit for visual estimation is a function of the quantity of the sample analyzed, the nature of matrix interference, sample preparation, and fiber size and distribution. Asbestos may be detected in concentrations of less than one percent by area if sufficient material is analyzed. Samples may contain fibers too small to be resolved by PLM (<0.25 micrometers in diameter) so detection of those fibers by this method may not be possible."

Samples are analyzed by layers, and percentages estimated visually during microscopic examination. Individual analysis sheets available upon request. Results may not be reproduced except in full. This test report relates only to the samples tested, and results must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Materials containing >1% asbestos are considered by the EPA to be asbestos containing materials, and must be handled as such.

Analyst: Jennifer Jaber

Lab Director: Jennifer D. Jaber Approved Signatory :

www.energylab.com

ANALYTICAL SUMMARY REPORT

November 07, 2022

WGM Group Inc 1111 E Broadway Missoula, MT 59802-4909

Work Order: H22100218

Project Name: Samaritan House

Energy Laboratories Inc Helena MT received the following 30 samples for WGM Group Inc on 10/7/2022 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H22100218-001	220512-LD-1	10/06/22 7:45	10/07/22	Wipe	Metals by ICP/ICPMS, Total Total Metals Digestion by SW3050B
H22100218-002	220512-LD-2	10/06/22 7:55	10/07/22	Wipe	Same As Above
H22100218-003	220512-LD-3	10/06/22 8:00	10/07/22	Wipe	Same As Above
H22100218-004	220512-LD-4	10/06/22 8:05	10/07/22	Wipe	Same As Above
H22100218-005	220512-LD-5	10/06/22 8:15	10/07/22	Wipe	Same As Above
H22100218-006	220512-LD-6	10/06/22 8:25	10/07/22	Wipe	Same As Above
H22100218-007	220512-LD-7	10/06/22 8:30	10/07/22	Wipe	Same As Above
H22100218-008	220512-LD-8	10/06/22 8:35	10/07/22	Wipe	Same As Above
H22100218-009	220512-LD-9	10/06/22 8:45	10/07/22	Wipe	Same As Above
H22100218-010	220512-LD-10	10/06/22 8:50	10/07/22	Wipe	Same As Above
H22100218-011	220512-LD-11	10/06/22 9:10	10/07/22	Wipe	Same As Above
H22100218-012	220512-LD-12	10/06/22 9:15	10/07/22	Wipe	Same As Above
H22100218-013	220512-LD-13	10/06/22 9:20	10/07/22	Wipe	Same As Above
H22100218-014	220512-LD-14	10/06/22 9:25	10/07/22	Wipe	Same As Above
H22100218-015	220512-LD-15	10/06/22 9:30	10/07/22	Wipe	Same As Above
H22100218-016	220512-LD-16	10/06/22 9:35	10/07/22	Wipe	Same As Above
H22100218-017	220512-LD-17	10/06/22 9:40	10/07/22	Wipe	Same As Above
H22100218-018	220512-LD-18	10/06/22 9:50	10/07/22	Wipe	Same As Above
H22100218-019	220512-LD-19	10/06/22 10:00	10/07/22	Wipe	Same As Above
H22100218-020	220512-LD-20	10/06/22 10:05	10/07/22	Wipe	Same As Above
H22100218-021	220512-LD-21	10/06/22 10:15	10/07/22	Wipe	Same As Above
H22100218-022	220512-LD-22	10/06/22 10:20	10/07/22	Wipe	Same As Above
H22100218-023	220512-LD-23	10/06/22 10:25	10/07/22	Wipe	Same As Above
H22100218-024	220512-LD-24	10/06/22 10:30	10/07/22	Wipe	Same As Above
H22100218-025	220512-LD-25	10/06/22 10:40	10/07/22	Wipe	Same As Above
H22100218-026	220512-LD-26	10/06/22 10:45	10/07/22	Wipe	Same As Above
H22100218-027	220512-LD-27	10/06/22 10:50	10/07/22	Wipe	Same As Above

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

ANALYTICAL SUMMARY REPORT

H22100218-028	220512-LD-28	10/06/22 11:10	10/07/22	Wipe	Same As Above
H22100218-029	220512-LD-29	10/06/22 11:30	10/07/22	Wipe	
H22100218-030	220512-LD-30	10/06/22 12:00	10/07/22	Wipe	Metals by ICP/ICPMS, Total Total Metals Digestion by SW3050B

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-001
Client Sample ID: 220512-LD-1

Report Date: 11/07/22 **Collection Date:** 10/06/22 07:45 **DateReceived:** 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 13:47 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-002
Client Sample ID: 220512-LD-2

Report Date: 11/07/22
Collection Date: 10/06/22 07:55
DateReceived: 10/07/22
Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 13:59 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-003
Client Sample ID: 220512-LD-3

Report Date: 11/07/22
Collection Date: 10/06/22 08:00
DateReceived: 10/07/22

Matrix: Wipe

	5.0		014/0000	10/12/22 14:01 / dck
ua/wipe	ua/wipe	ua/wipe 5.0	ug/wipe 5.0	ug/wipe 5.0 SW6020

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-004
Client Sample ID: 220512-LD-4

Report Date: 11/07/22

Collection Date: 10/06/22 08:05

DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846					
Lead	11 ug/wipe		5.0	SW6020	10/12/22 14:04 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-005
Client Sample ID: 220512-LD-5

Report Date: 11/07/22

Collection Date: 10/06/22 08:15

DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846					
Lead	27 ug/wipe		5.0	SW6020	10/12/22 14:06 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-006
Client Sample ID: 220512-LD-6

Report Date: 11/07/22

Collection Date: 10/06/22 08:25

DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	11 ug/wipe		5.0	SW6020	10/12/22 14:09 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-007
Client Sample ID: 220512-LD-7

Report Date: 11/07/22
Collection Date: 10/06/22 08:30
DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	42 ug/wipe		5.0	SW6020	10/12/22 14:11 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-008
Client Sample ID: 220512-LD-8

Report Date: 11/07/22

Collection Date: 10/06/22 08:35

DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	25 ug/wipe		5.0	SW6020	10/12/22 14:13 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-009
Client Sample ID: 220512-LD-9

Report Date: 11/07/22 **Collection Date:** 10/06/22 08:45 **DateReceived:** 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 14:16 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-010
Client Sample ID: 220512-LD-10

Report Date: 11/07/22
Collection Date: 10/06/22 08:50
DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846					
Lead	ND ug/wipe		5.0	SW6020	10/12/22 14:23 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-011
Client Sample ID: 220512-LD-11

Report Date: 11/07/22
Collection Date: 10/06/22 09:10
DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe	5.0	SW6020	10/12/22 14:26 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 11/07/22** Project: Samaritan House Collection Date: 10/06/22 09:15 Lab ID: DateReceived: 10/07/22 H22100218-012 Client Sample ID: 220512-LD-12

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846					
Lead	ND ug/wipe		5.0	SW6020	10/12/22 14:28 / dck

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-013
Client Sample ID: 220512-LD-13

Report Date: 11/07/22
Collection Date: 10/06/22 09:20
DateReceived: 10/07/22
Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 14:30 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-014
Client Sample ID: 220512-LD-14

Report Date: 11/07/22

Collection Date: 10/06/22 09:25

DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers I	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846					
Lead	ND ug/wipe	5	5.0	SW6020	10/12/22 14:33 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-015
Client Sample ID: 220512-LD-15

Report Date: 11/07/22
Collection Date: 10/06/22 09:30
DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe	5.0	SW6020	10/12/22 14:35 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 11/07/22

 Project:
 Samaritan House
 Collection Date:
 10/06/22 09:35

 Lab ID:
 H22100218-016
 DateReceived:
 10/07/22

 Client Sample ID:
 220512-LD-16
 Matrix:
 Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 14:38 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-017
Client Sample ID: 220512-LD-17

Report Date: 11/07/22

Collection Date: 10/06/22 09:40

DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 14:40 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-018
Client Sample ID: 220512-LD-18

Report Date: 11/07/22
Collection Date: 10/06/22 09:50
DateReceived: 10/07/22
Matrix: Wipe

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND	ug/wipe		5.0		SW6020	10/12/22 14:42 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 11/07/22

 Project:
 Samaritan House
 Collection Date:
 10/06/22 10:00

 Lab ID:
 H22100218-019
 DateReceived:
 10/07/22

 Client Sample ID:
 220512-LD-19
 Matrix:
 Wipe

 Analyses
 Result Units
 Qualifiers
 RL
 MCL/QCL Method
 Analysis Date / By

 METALS, TOTAL - EPA SW846

 Lead
 ND ug/wipe
 5.0
 SW6020
 10/12/22 14:45 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-020
Client Sample ID: 220512-LD-20

Report Date: 11/07/22
Collection Date: 10/06/22 10:05
DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers R	MCL L QCL		Analysis Date / By
METALS, TOTAL - EPA SW846	ND /	_	•	014/0000	40/40/00 44 47 / 11
Lead	ND ug/wipe	5	.0	SW6020	10/12/22 14:47 / (

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 11/07/22

 Project:
 Samaritan House
 Collection Date:
 10/06/22 10:15

 Lab ID:
 H22100218-021
 DateReceived:
 10/07/22

 Client Sample ID:
 220512-LD-21
 Matrix:
 Wipe

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND	ug/wipe		5.0		SW6020	10/12/22 15:06 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Matrix: Wipe

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 11/07/22** Project: Samaritan House Collection Date: 10/06/22 10:20 DateReceived: 10/07/22 Lab ID: H22100218-022 Client Sample ID: 220512-LD-22

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND	ug/wipe		5.0		SW6020	10/12/22 15:18 / dck

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 11/07/22

 Project:
 Samaritan House
 Collection Date:
 10/06/22 10:25

 Lab ID:
 H22100218-023
 DateReceived:
 10/07/22

 Client Sample ID:
 220512-LD-23
 Matrix:
 Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 15:21 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-024
Client Sample ID: 220512-LD-24

Report Date: 11/07/22
Collection Date: 10/06/22 10:30
DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers R		MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846					
Lead	25 ug/wipe	5	.0	SW6020	10/12/22 15:23 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 11/07/22

 Project:
 Samaritan House
 Collection Date:
 10/06/22 10:40

 Lab ID:
 H22100218-025
 DateReceived:
 10/07/22

 Client Sample ID:
 220512-LD-25
 Matrix:
 Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846					
Lead	ND ug/wipe		5.0	SW6020	10/12/22 15:26 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 11/07/22

 Project:
 Samaritan House
 Collection Date:
 10/06/22 10:45

 Lab ID:
 H22100218-026
 DateReceived:
 10/07/22

 Client Sample ID:
 220512-LD-26
 Matrix:
 Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	5.5 ug/wipe		5.0	SW6020	10/12/22 15:28 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Page 28 of 37

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 11/07/22** Project: Samaritan House Lab ID: H22100218-027 Client Sample ID: 220512-LD-27

Collection Date: 10/06/22 10:50 DateReceived: 10/07/22 Matrix: Wipe

Analyses	Result Units	Qualifiers RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846				
Lead	ND ug/wipe	5.0	SW6020	10/12/22 15:30 / dck

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 11/07/22

 Project:
 Samaritan House
 Collection Date:
 10/06/22 11:10

 Lab ID:
 H22100218-028
 DateReceived:
 10/07/22

 Client Sample ID:
 220512-LD-28
 Matrix:
 Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	60 ug/wipe		5.0	SW6020	10/12/22 15:33 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc
Project: Samaritan House
Lab ID: H22100218-030
Client Sample ID: 220512-LD-30

Report Date: 11/07/22
Collection Date: 10/06/22 12:00
DateReceived: 10/07/22

Matrix: Wipe

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
METALS, TOTAL - EPA SW846 Lead	ND ug/wipe		5.0	SW6020	10/12/22 15:35 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100218 Report Date: 11/07/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RP	DLimit	Qual
Method:	SW6020							Analytical	Run: ICPN	IS205-H_	_221012A
Lab ID:	ICV	Initi	al Calibration	on Verification S	tandard					10/12/	22 12:47
Lead			0.0612	mg/L	0.0010	102	90	110			
Lab ID:	ICSA	Inte	erference C	heck Sample A						10/12/	22 12:54
Lead		-0.	.0000486	mg/L	0.0010						
Lab ID:	ICSAB	Inte	rference C	heck Sample AB	3					10/12/	22 12:59
Lead		-0.	.0000510	mg/L	0.0010		0	0			
Lab ID:	CCV	Cor	ntinuing Cal	ibration Verificat	tion Standa	rd				10/12/	22 13:30
Lead			0.0490	mg/L	0.0010	98	90	110			
Lab ID:	CCV	Cor	ntinuing Cal	ibration Verificat	ion Standaı	rd				10/12/	22 14:18
Lead			0.0490	mg/L	0.0010	98	90	110			
Lab ID:	CCV	Cor	ntinuing Cal	libration Verificat	tion Standar	rd				10/12/	22 14:50
Lead			0.0495	mg/L	0.0010	99	90	110			
Lab ID:	ICV	Initi	al Calibration	on Verification S	tandard					10/12/	22 17:07
Lead			0.0597	mg/L	0.0010	100	90	110			
Lab ID:	ICSA	Inte	erference Cl	heck Sample A						10/12/	22 17:14
Lead		0.	.0000416	mg/L	0.0010						
Lab ID:	ICSAB	Inte	erference C	heck Sample AB	3					10/12/	22 17:19
Lead		0.	.0000500	mg/L	0.0010		0	0			
Method:	SW6020									Bate	ch: 63841
Lab ID:	MB-63841	Met	thod Blank				Run: ICPM	S205-H_221012A		10/12/	22 13:35
Lead			ND	ug/wipe	0.5						
Lab ID:	LCS-63841	Lab	oratory Co	ntrol Sample			Run: ICPM	S205-H_221012A		10/12/	22 13:37
Lead			100	ug/wipe	5.0	99	74.4	108.6			
Lab ID:	LFB-63841	Lab	oratory For	tified Blank			Run: ICPM	S205-H_221012A		10/12/	22 13:40
Lead			51	ug/wipe	5.0	101	80	120			
Lab ID:	LFBD-63841	Lab	oratory For	tified Blank Dup	licate		Run: ICPM	S205-H_221012A		10/12/	22 13:42
Lead			52	ug/wipe	5.0	106	80	120	2.0	20	
Lab ID:	H22100218-001AMS	Sar	nple Matrix	Spike			Run: ICPM	S205-H_221012A		10/12/	22 13:52
Lead	DECTION COURT		14	ug/wipe	5.0	109	75	125			
Lab ID:	GESTION SPIKE H22100218-001AMS	D Sar	nnlo Matriy	Spike Duplicate			Pun: ICPM	S205-H_221012A		10/12/	22 13:54
Lead	TIZZ TOOZ TO GOTAMO	o Jai	14	ug/wipe	5.0	111	75	125	1.6	20	22 13.54
	SESTION SPIKE			· '				-			
Method:	SW6020									Bate	ch: 63842
Lab ID:	MB-63842	Met	thod Blank				Run: ICPM	S205-H_221012A		10/12/	22 14:54
Lead			ND	ug/wipe	0.5						

Qualifiers:

RL - Analyte Reporting Limit

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100218 Report Date: 11/07/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: S	SW6020									Bat	ch: 63842
Lab ID: Le	CS-63842	Lak	oratory Co	ntrol Sample			Run: ICPM	S205-H_221012A		10/12/	/22 14:57
Lead			100	ug/wipe	5.0	98	74.4	108.6			
Lab ID: L	FB-63842	Lat	ooratory For	rtified Blank			Run: ICPM	S205-H_221012A		10/12/	/22 14:59
Lead			52	ug/wipe	5.0	103	80	120			
Lab ID: L	FBD-63842	Lat	ooratory For	rtified Blank Dup	olicate		Run: ICPM	S205-H_221012A		10/12/	/22 15:02
Lead			51	ug/wipe	5.0	101	80	120			
Lab ID: H	122100218-021AMS	Sa	mple Matrix	Spike			Run: ICPM	S205-H_221012A		10/12/	/22 15:11
Lead			14	ug/wipe	5.0	96	75	125			
POST-DIGES	TION SPIKE										
Lab ID: H	122100218-021AMSI	D Sai	mple Matrix	Spike Duplicate	e		Run: ICPM:	S205-H_221012A		10/12/	/22 15:14
Lead POST-DIGES	TION SDIVE		14	ug/wipe	5.0	98	75	125	1.5	20	

Work Order Receipt Checklist

WGM Group Inc

H22100218

Login completed by:	Wanda Johnson		Date	Received: 10/7/2022
Reviewed by:	tjones		Re	ceived by: rrf
Reviewed Date:	10/10/2022		Car	rier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes √	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes √	No 🗌	
Chain of custody agrees with	sample labels?	Yes √	No 🗌	
Samples in proper container	/bottle?	Yes √	No 🗌	
Sample containers intact?		Yes √	No 🗌	
Sufficient sample volume for	indicated test?	Yes √	No 🗌	
All samples received within h (Exclude analyses that are or such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌	
Temp Blank received in all sl	nipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	3.5°C On Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

Sample jar received for 220512-LD-29 however, there was no sample inside. wjj 10/7/2022

Email MA-MA City, State, Zip Mailing Address

AR 9

Danaros con

eive Invoice - Hard Copy

X mail

Ernel

Receive Report: CHard Copy TETTEL

DIEVEL IV DINELAG DE

City, State, Zip Mailing Address Phone 406-728-

Quote

194-821-90h aug

SOUNDS LIBRATION Account Information (88%) pany/Name WAT MINDA ARREA P Chain of Custody & Analytical Request Record 20 Contact Report Information // www.energyiab.com JACEL Comments Page 잌

4611 WANDER, com Chestions

Record MUST be signed 1220512-1 Project Information INING CLIENTS, please indicate sample type. If are has been processed or refined, call before r ample Origin State roject Name, PWSID, Permit, etc. motor Name BIRCUT METRITH SOURPHOOM 240-05 20512. provided preservatives were used Sample Identification BREAT MORRIT Cooler (D(s) 3 V DYes STARITATI 6 Q 8 EPA/State Compliance II No are (NOT ground or refined): 10/6/22 42038 10622 HOUSE Date Collection XY YES 1400 745 850 248 830 008 835 528 755 513 208 Time II No LATE S W- Water 5 - Solds Matrix Codes DW. O One A. Ak Matrix (See Codes May 0 0 ABORATORY USE 0 0 0 0 0 a 0 0 LSAD DUS uerals 6010.20 and by Quient) Payment Type sh Check Analysis Requested Date/Tiese CALL States See Attached IVI name Energy Laboratories MUST be contacted prior to RUSH sample submittal for standard unless marked as charges and scheduling All turnaround times are See Instructions Page 422100018 ELI LAB ID RUSH.

Z g

8

ö

EEDEX COUD

Shipped By

N C B

N N

Account Information (Billing Information)	Report Information (if different man Account Information)	Comments
CompanyMame WIGH CROCK INC	Company/Name	
Contact	Contact	
Phone	Phone	
Maling Address	Mailing Address	
City, State, Zip	City, State, Zip	
Email	Email	
eceive Invoice CHard Copy CEmail Receive Report CHard Copy CEmail	Receive Report CHard Copy CEmail	
2720517.1 Quote 472038	Special Report Formats:	
	Market Codes	

Project Information		Matrix Codes		Analysis Requested	ted		
Project Name, PWSID, Permit, etc. SANARATAN	Jenst House	W- Water	0				All turnaround times are
Sampler Numer B N CRAHET Sample	24	6 Solds	124				RUSH.
7	EPA/State Compliance X Yes II No	V - Vagetation	10				Energy Laboratories MUST ha contacted prior to
Lab provided preservatives were used ID Yes ID No	0	O- Other	GO			ed	RUSH sample submittel for
MMNO, CLIENTS, please indicate semple type. "If one has been processed or refined, call before sending." Byproduct 11 (e)2 material. Unprocessed of	ore (NOT ground or refined)*	DW - Street	ALS			Attache	charges and scheduling – See Instructions Page
Sample Identification	Collection Time	Number of Matrix Comment (See Codes	157				TAT Laboratory Line Only
1220512-17-11	6	1 0	×				H2
2 / / 12	51b J	1 0	×.				
8 / 1 13	920	1 0	Α .				
h)	925	1 0	4-	The same of the sa			
. 15	930	1 0	Χ.				N 128 0 24 18
9	935	10	×				
	ahb	1 0	×				
8)	950	100	X		200		
61	, 1000	1 0	×		6		
10 V V 20	V 1005	1 0	×		0000000		
Custody Reginquened by many Record MUST (ALCA) (CRUTT)	18/27 1400 San	Sgrature	The state of	Received by (print)	Date/Time		Sagnature
		Signature		Received by Laboratory (print)	OstaTion WOC722	Cotto Signatura	CAM Mantendis
			LABORATORY USE ONLY	MLY		THE PERSON	1
Shipped By Cooler ID(s) Custody Sepais	B (Y N 3 C °C	Tomp E	N N N	CC Cash Check	Amount	Rece	Receipt Number (cash-black only)

Chain of Custody & Analytical Request Record

Page 3 of 3

www.energylab.com

ANALYTICAL SUMMARY REPORT

October 31, 2022

WGM Group Inc 1111 E Broadway Missoula, MT 59802-4909

Work Order: H22100108

Project Name: Samaritan House Ph II

Energy Laboratories Inc Helena MT received the following 9 samples for WGM Group Inc on 10/5/2022 for analysis.

Lab ID	Client Sample ID	Collect Date R	eceive Date	Matrix	Test
H22100108-001	220512-SB1-1	10/04/22 11:39	10/05/22	Soil	Metals by ICP/ICPMS, Total Mercury in Solid By CVAA EPH-Ultrasonic Extraction SW35500 Methanol Extraction for Volatiles SW5035 Hydrocarbons, Extractable Petroleum-Scrn Volatile Petroleum Hydrocarbons Percent Moisture Total Metals Digestion by SW3050B Mercury Digestion by SW7471B Soil Preparation USDA1 Volatile Organics, Methanol Extraction SW5035 8260-Volatile Organic Compounds - Short List
H22100108-002	220512-SB1-2	10/04/22 11:49	10/05/22	Soil	Metals by ICP/ICPMS, Total Mercury in Solid By CVAA EPH-Ultrasonic Extraction SW35500 Methanol Extraction for Volatiles SW5035 Hydrocarbons, Extractable Petroleum-Scrn Volatile Petroleum Hydrocarbons Percent Moisture Total Metals Digestion by SW3050B Mercury Digestion by SW7471B Volatile Organics, Methanol Extraction SW5035 8260-Volatile Organic Compounds - Short List
H22100108-003	220512-SB2-1	10/04/22 10:24	10/05/22	Soil	Same As Above
H22100108-004	220512-SB2-2	10/04/22 10:29	10/05/22	Soil	Same As Above

ANALYTICAL SUMMARY REPORT

H22100108-005	220512-SB3-1	10/04/22 9:16	10/05/22	Soil	Metals by ICP/ICPMS, Total Mercury in Solid By CVAA EPH-Ultrasonic Extraction SW3550C Methanol Extraction for Volatiles SW5035 EPH-Fractionation Hydrocarbons, Aliphatic Extractable Petroleum Hydrocarbons, Aromatic Extractable Petroleum Hydrocarbons, Extractable Petroleum-Scrn Volatile Petroleum Hydrocarbons Percent Moisture Total Metals Digestion by SW3050B Mercury Digestion by SW7471B Volatile Organics, Methanol Extraction SW5035 8260-Volatile Organic Compounds - Short List
H22100108-006	220512-SB3-2	10/04/22 9:26	10/05/22	Soil	Metals by ICP/ICPMS, Total Mercury in Solid By CVAA EPH-Ultrasonic Extraction SW3550C Methanol Extraction for Volatiles SW5035 Hydrocarbons, Extractable Petroleum-Scrn Volatile Petroleum Hydrocarbons Percent Moisture Total Metals Digestion by SW3050B Mercury Digestion by SW7471B Volatile Organics, Methanol Extraction SW5035 8260-Volatile Organic Compounds - Short List
H22100108-007	220512-SB4-2	10/04/22 8:10	10/05/22	Soil	Same As Above
H22100108-008	220512-SW1	10/04/22 11:30	10/05/22	Aqueous	Metals by ICP/ICPMS, Total Recoverable Mercury, Total EPH-Sep Funnel Extraction SW3510C Hydrocarbons, Extractable SW8015MPetroleum Screen Volatile Petroleum Hydrocarbons Metals pH check by the Laboratory FIRST Metals Digestion by SW3010A Mercury Digestion by SW7470A 8260-Volatile Organic Compounds- Short List
H22100108-009	Trip Blank-11245	10/04/22 11:30	10/05/22	Trip Blank	8260-Volatile Organic Compounds- Short List

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Billings, MT **800.735.4489** • Casper, WY **888.235.0515**Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

ANALYTICAL SUMMARY REPORT

Report Approved By:

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

Report Date: 10/31/22

CLIENT: WGM Group Inc

Project: Samaritan House Ph II

Work Order: H22100108 CASE NARRATIVE

Per client we are to fractionate samples over the MCL. wjj 10/10/2022

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 11:39

 Lab ID:
 H22100108-001
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB1-1
 Matrix:
 Soil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Moisture	8.2	wt%		0.2		D2974	10/06/22 08:49 / jjp
OOFO EVED A OTA DI E METAL O							<i>,,</i> ,
3050 EXTRACTABLE METALS	0			4		CMCOOO	40/07/00 40:05 / 44.
Arsenic		mg/kg-dry		1		SW6020	10/07/22 12:05 / dck
Barium		mg/kg-dry		1 1		SW6020	10/07/22 12:05 / dck
Characteristic	ND	mg/kg-dry		· ·		SW6020	10/07/22 12:05 / dck
Chromium		mg/kg-dry		1 1		SW6020	10/07/22 12:05 / dck
Lead Selenium		mg/kg-dry		-		SW6020	10/07/22 12:05 / dck
	ND	mg/kg-dry		1 1		SW6020	10/07/22 12:05 / dck
Silver	ND	mg/kg-dry		ı		SW6020	10/07/22 12:05 / dck
METALS, TOTAL							
Mercury	ND	mg/kg-dry		0.50		SW7471B	10/07/22 12:10 / kjb
VOLATILE ORGANIC COMPOUNDS							
Bromoform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Benzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Bromobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Bromochloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Bromodichloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Bromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Carbon tetrachloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Chlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Chloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
2-Chloroethyl vinyl ether	ND	mg/kg-dry		0.20		SW8260B	10/12/22 19:48 / tmj
Chloroform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Chloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
2-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
4-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Chlorodibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,2-Dibromoethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Dibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,2-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,3-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,4-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
Dichlorodifluoromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,1-Dichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,2-Dichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
cis-1,2-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,1-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
trans-1,2-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
1,3-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj
2,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Project: Samaritan House Ph II Collection Date: 10/04/22 11:39 Lab ID: H22100108-001 DateReceived: 10/05/22 Client Sample ID: 220512-SB1-1 Matrix: Soil

					MCL/				
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
VOLATILE ODGANIC COMPOLINES									
VOLATILE ORGANIC COMPOUNDS	ND	//		0.00		OWOOOD	40/40/00 04 45 / 1 '		
1,1-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
cis-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
trans-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Ethylbenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Methyl tert-butyl ether (MTBE)		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Methylene chloride		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Methyl ethyl ketone		mg/kg-dry		4.0		SW8260B	10/12/22 01:15 / tmj		
Styrene		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
1,1,1,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
1,1,2,2-Tetrachloroethane	ND	0 0 ,		0.20		SW8260B	10/12/22 01:15 / tmj		
Tetrachloroethene	ND	0 0 ,		0.20		SW8260B	10/12/22 01:15 / tmj		
Toluene		mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
1,1,1-Trichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
1,1,2-Trichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Trichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Trichlorofluoromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
1,2,3-Trichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Vinyl chloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
m+p-Xylenes	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
o-Xylene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Xylenes, Total	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:15 / tmj		
Surr: p-Bromofluorobenzene	105	%REC		60-143		SW8260B	10/12/22 01:15 / tmj		
Surr: Dibromofluoromethane	87.0	%REC		71-135		SW8260B	10/12/22 01:15 / tmj		
Surr: 1,2-Dichloroethane-d4	101	%REC		65-147		SW8260B	10/12/22 01:15 / tmj		
Surr: Toluene-d8	100	%REC		76-133		SW8260B	10/12/22 01:15 / tmj		
PETROLEUM HYDROCARBONS-VOLATI	LE (VPH)							
Methyl tert-butyl ether (MTBE)	ND	mg/kg-dry		0.11	0.078	MA-VPH	10/12/22 07:51 / GMS		
Benzene	ND	mg/kg-dry		0.054	0.07	MA-VPH	10/12/22 07:51 / GMS		
Toluene	ND	mg/kg-dry		0.054	21	MA-VPH	10/12/22 07:51 / GMS		
Ethylbenzene	ND	mg/kg-dry		0.054	6.4	MA-VPH	10/12/22 07:51 / GMS		
m+p-Xylenes	ND	mg/kg-dry		0.054		MA-VPH	10/12/22 07:51 / GMS		
o-Xylene		mg/kg-dry		0.054		MA-VPH	10/12/22 07:51 / GMS		
Xylenes, Total		mg/kg-dry		0.054	72	MA-VPH	10/12/22 07:51 / GMS		
Naphthalene		mg/kg-dry		0.11	2.2	MA-VPH	10/12/22 07:51 / GMS		
C9 to C10 Aromatics	ND	mg/kg-dry		2.2	130	MA-VPH	10/12/22 07:51 / GMS		
C5 to C8 Aliphatics	ND	mg/kg-dry		2.2	52	MA-VPH	10/12/22 07:51 / GMS		
C9 to C12 Aliphatics		mg/kg-dry		2.2	77	MA-VPH	10/12/22 07:51 / GMS		
Total Purgeable Hydrocarbons		mg/kg-dry		2.2	100	MA-VPH	10/12/22 07:51 / GMS		
Surr: VPH Aromatics Surrogate		%REC	,	70-130		MA-VPH	10/12/22 07:51 / GMS		
Surr: VPH Aliphatics Surrogate		%REC		70-130		MA-VPH	10/12/22 07:51 / GMS		
Suit. VI II / III priation Ourrogato	, 00.0	,UILLO		. 0 100		17// X V I I I	1.5, 12,22 01.01 / ONO		

⁻ Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 11:39

 Lab ID:
 H22100108-001
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB1-1
 Matrix:
 Soil

Analyses EXTRACTABLE PETROLEUM HYDROCAR	Result		Qualifiers ANALYSIS	RL	MCL/ QCL	Method	Analysis Date / By
Total Extractable Hydrocarbons Surr: o-Terphenyl		mg/kg-dry %REC	J	20 40-140	200	SW8015M SW8015M	10/06/22 16:37 / jdh 10/06/22 16:37 / jdh

- Note: Total Extractable Hydrocarbons are defined as the total hydrocarbon responses regardless of elution time.

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 11:49

 Lab ID:
 H22100108-002
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB1-2
 Matrix:
 Soil

					MCL /		
Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Moisture	15.5	wt%		0.2		D2974	10/06/22 08:49 / jjp
3050 EXTRACTABLE METALS							
Arsenic	6	mg/kg-dry		1		SW6020	10/07/22 12:19 / dck
Barium	271	mg/kg-dry	D	4		SW6020	10/10/22 09:48 / dck
Cadmium	ND		_	1		SW6020	10/07/22 12:19 / dck
Chromium	20			1		SW6020	10/07/22 12:19 / dck
Lead	13	mg/kg-dry		1		SW6020	10/07/22 12:19 / dck
Selenium	ND	mg/kg-dry		1		SW6020	10/07/22 12:19 / dck
Silver	ND	mg/kg-dry		1		SW6020	10/07/22 12:19 / dck
METALS, TOTAL							
Mercury	ND	mg/kg-dry		0.50		SW7471B	10/07/22 12:18 / kjb
VOLATILE ORGANIC COMPOUNDS							
Bromoform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Benzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Bromobenzene	ND	0 0 ,		0.20		SW8260B	10/12/22 01:47 / tmj
Bromochloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Bromodichloromethane		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Bromomethane		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Carbon tetrachloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Chloropene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Chloroethane 2-Chloroethyl vinyl ether	ND ND	mg/kg-dry mg/kg-dry		0.20 0.20		SW8260B SW8260B	10/12/22 01:47 / tmj 10/12/22 20:20 / tmj
Chloroform	ND ND			0.20		SW8260B	10/12/22 20:20 / tinj 10/12/22 01:47 / tmj
Chloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
2-Chlorotoluene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
4-Chlorotoluene	ND			0.20		SW8260B	10/12/22 01:47 / tmj
Chlorodibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
1,2-Dibromoethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Dibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
1,2-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
1,3-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
1,4-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
Dichlorodifluoromethane		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
1,1-Dichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
1,2-Dichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
cis-1,2-Dichloroethene	ND	0 0 ,		0.20		SW8260B	10/12/22 01:47 / tmj
1,1-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
trans-1,2-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj
1,2-Dichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj 10/12/22 01:47 / tmj
1,3-Dichloropropane 2,2-Dichloropropane	ND	mg/kg-dry mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj 10/12/22 01:47 / tmj
z,z-Dichioropropane	ND	mg/kg-ury		0.20		SW8260B	10/12/22 01:47 / 1111]

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

D - Reporting Limit (RL) increased due to sample matrix

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Project: Samaritan House Ph II Collection Date: 10/04/22 11:49 Lab ID: H22100108-002 DateReceived: 10/05/22 Client Sample ID: 220512-SB1-2 Matrix: Soil

					MCL/				
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
VOLATILE ODGANIC COMPOLINES									
VOLATILE ORGANIC COMPOUNDS	ND	//		0.00		OWOOOD	40/40/00 04 47 /		
1,1-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
cis-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
trans-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Ethylbenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Methyl tert-butyl ether (MTBE)		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Methylene chloride		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Methyl ethyl ketone		mg/kg-dry		4.0		SW8260B	10/12/22 01:47 / tmj		
Styrene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
1,1,1,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
1,1,2,2-Tetrachloroethane	ND	0 0 ,		0.20		SW8260B	10/12/22 01:47 / tmj		
Tetrachloroethene	ND	0 0 ,		0.20		SW8260B	10/12/22 01:47 / tmj		
Toluene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
1,1,1-Trichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
1,1,2-Trichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Trichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Trichlorofluoromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
1,2,3-Trichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Vinyl chloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
m+p-Xylenes	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
o-Xylene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Xylenes, Total	ND	mg/kg-dry		0.20		SW8260B	10/12/22 01:47 / tmj		
Surr: p-Bromofluorobenzene	100	%REC		60-143		SW8260B	10/12/22 01:47 / tmj		
Surr: Dibromofluoromethane	98.0	%REC		71-135		SW8260B	10/12/22 01:47 / tmj		
Surr: 1,2-Dichloroethane-d4	97.0	%REC		65-147		SW8260B	10/12/22 01:47 / tmj		
Surr: Toluene-d8	95.0	%REC		76-133		SW8260B	10/12/22 01:47 / tmj		
PETROLEUM HYDROCARBONS-VOLATI	LE (VPH)							
Methyl tert-butyl ether (MTBE)	ND	mg/kg-dry		0.12	0.078	MA-VPH	10/12/22 08:22 / GMS		
Benzene	ND	mg/kg-dry		0.059	0.07	MA-VPH	10/12/22 08:22 / GMS		
Toluene	ND	mg/kg-dry		0.059	21	MA-VPH	10/12/22 08:22 / GMS		
Ethylbenzene	ND	mg/kg-dry		0.059	6.4	MA-VPH	10/12/22 08:22 / GMS		
m+p-Xylenes		mg/kg-dry		0.059		MA-VPH	10/12/22 08:22 / GMS		
o-Xylene		mg/kg-dry		0.059		MA-VPH	10/12/22 08:22 / GMS		
Xylenes, Total		mg/kg-dry		0.059	72	MA-VPH	10/12/22 08:22 / GMS		
Naphthalene		mg/kg-dry		0.12	2.2	MA-VPH	10/12/22 08:22 / GMS		
C9 to C10 Aromatics	ND	mg/kg-dry		2.4	130	MA-VPH	10/12/22 08:22 / GMS		
C5 to C8 Aliphatics	ND	mg/kg-dry		2.4	52	MA-VPH	10/12/22 08:22 / GMS		
C9 to C12 Aliphatics		mg/kg-dry		2.4	77	MA-VPH	10/12/22 08:22 / GMS		
Total Purgeable Hydrocarbons		mg/kg-dry		2.4	100	MA-VPH	10/12/22 08:22 / GMS		
Surr: VPH Aromatics Surrogate		%REC		70-130		MA-VPH	10/12/22 08:22 / GMS		
Surr: VPH Aliphatics Surrogate		%REC		70-130		MA-VPH	10/12/22 08:22 / GMS		
Suit. VI II / III priation Ourrogato		,011LO		. 0 . 00		17// X VI II	10, 12,22 00.22 / ONO		

⁻ Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22 Project:** Samaritan House Ph II Collection Date: 10/04/22 11:49 Lab ID: H22100108-002 DateReceived: 10/05/22 Client Sample ID: 220512-SB1-2 Matrix: Soil

Λ	ı /

Allalyses	Result Utilis	Qualifiers	KL	QCL Wellion	Alialysis Date / By

EXTRACTABLE PETROLEUM HYDROCARBONS-SCREEN ANALYSIS

Total Extractable Hydrocarbons 9.3 mg/kg-dry 20 SW8015M 10/06/22 17:23 / jdh Surr: o-Terphenyl 89.0 %REC 40-140 SW8015M 10/06/22 17:23 / jdh

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

⁻ Note: Total Extractable Hydrocarbons are defined as the total hydrocarbon responses regardless of elution time.

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 10:24

 Lab ID:
 H22100108-003
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB2-1
 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Moisture	3.7	wt%		0.2		D2974	10/06/22 08:50 / jjp
Worstard	5.7	WU/O		0.2		D2314	10/00/22 00.30 / JJP
3050 EXTRACTABLE METALS							
Arsenic		mg/kg-dry		1		SW6020	10/07/22 12:22 / dck
Barium	103	mg/kg-dry	D	4		SW6020	10/10/22 09:50 / dck
Cadmium	ND	mg/kg-dry		1		SW6020	10/07/22 12:22 / dck
Chromium		mg/kg-dry		1		SW6020	10/07/22 12:22 / dck
Lead		mg/kg-dry		1		SW6020	10/07/22 12:22 / dck
Selenium		mg/kg-dry		1		SW6020	10/07/22 12:22 / dck
Silver	2	mg/kg-dry		1		SW6020	10/07/22 12:22 / dck
METALS, TOTAL							
Mercury	ND	mg/kg-dry		0.50		SW7471B	10/07/22 12:20 / kjb
VOLATILE ORGANIC COMPOUNDS							
Bromoform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Benzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Bromobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Bromochloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Bromodichloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Bromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Carbon tetrachloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Chlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Chloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
2-Chloroethyl vinyl ether	ND	mg/kg-dry		0.20		SW8260B	10/12/22 20:51 / tmj
Chloroform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Chloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
2-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
4-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Chlorodibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,2-Dibromoethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Dibromomethane	ND	0 0 ,		0.20		SW8260B	10/12/22 02:19 / tmj
1,2-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,3-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,4-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Dichlorodifluoromethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,1-Dichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,2-Dichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
cis-1,2-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,1-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
trans-1,2-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,2-Dichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,3-Dichloropropane	ND	0 0 ,		0.20		SW8260B	10/12/22 02:19 / tmj
2,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

D - Reporting Limit (RL) increased due to sample matrix

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Project: Samaritan House Ph II Collection Date: 10/04/22 10:24 Lab ID: H22100108-003 DateReceived: 10/05/22 Client Sample ID: 220512-SB2-1 Matrix: Soil

Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
1,1-Dichloropropene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
cis-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
trans-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Ethylbenzene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Methyl tert-butyl ether (MTBE)		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Methylene chloride		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Methyl ethyl ketone		mg/kg-dry		4.0		SW8260B	10/12/22 02:19 / tmj
Styrene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,1,1,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,1,2,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Tetrachloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Toluene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,1,1-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,1,2-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Trichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Trichlorofluoromethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
1,2,3-Trichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Vinyl chloride		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
m+p-Xylenes		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
o-Xylene		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Xylenes, Total		mg/kg-dry		0.20		SW8260B	10/12/22 02:19 / tmj
Surr: p-Bromofluorobenzene		%REC		60-143		SW8260B	10/12/22 02:19 / tmj
Surr: Dibromofluoromethane	_	%REC		71-135		SW8260B	10/12/22 02:19 / tmj
Surr: 1,2-Dichloroethane-d4		%REC		65-147		SW8260B	10/12/22 02:19 / tmj
Surr: Toluene-d8		%REC		76-133		SW8260B	10/12/22 02:19 / tmj
				70 100		OWOZOOD	10/12/22 02:10 / tillj
PETROLEUM HYDROCARBONS-VOLA	•						
Methyl tert-butyl ether (MTBE)		mg/kg-dry		0.10	0.078	MA-VPH	10/12/22 08:53 / GMS
Benzene		mg/kg-dry		0.052	0.07	MA-VPH	10/12/22 08:53 / GMS
Toluene		mg/kg-dry		0.052	21	MA-VPH	10/12/22 08:53 / GMS
Ethylbenzene		mg/kg-dry		0.052	6.4	MA-VPH	10/12/22 08:53 / GMS
m+p-Xylenes		mg/kg-dry		0.052		MA-VPH	10/12/22 08:53 / GMS
o-Xylene		mg/kg-dry		0.052		MA-VPH	10/12/22 08:53 / GMS
Xylenes, Total		mg/kg-dry		0.052	72	MA-VPH	10/12/22 08:53 / GMS
Naphthalene		mg/kg-dry		0.10	2.2	MA-VPH	10/12/22 08:53 / GMS
C9 to C10 Aromatics		mg/kg-dry		2.1	130	MA-VPH	10/12/22 08:53 / GMS
C5 to C8 Aliphatics		mg/kg-dry		2.1	52	MA-VPH	10/12/22 08:53 / GMS
C9 to C12 Aliphatics	ND	mg/kg-dry		2.1	77	MA-VPH	10/12/22 08:53 / GMS
Total Purgeable Hydrocarbons	ND	mg/kg-dry		2.1	100	MA-VPH	10/12/22 08:53 / GMS
Surr: VPH Aromatics Surrogate		%REC		70-130		MA-VPH	10/12/22 08:53 / GMS
Surr: VPH Aliphatics Surrogate	92.0	%REC		70-130		MA-VPH	10/12/22 08:53 / GMS

⁻ Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 10:24

 Lab ID:
 H22100108-003
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB2-1
 Matrix:
 Soil

Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
EVERACIARI E RETROI EUM UVERGOAR	DONO	CODEEN	ANAL VOIO				

EXTRACTABLE PETROLEUM HYDROCARBONS-SCREEN ANALYSIS

Total Extractable Hydrocarbons 27 mg/kg-dry 20 200 SW8015M 10/06/22 18:09 / jdh Surr: o-Terphenyl 93.0 %REC 40-140 SW8015M 10/06/22 18:09 / jdh

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note: Total Extractable Hydrocarbons are defined as the total hydrocarbon responses regardless of elution time.

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Project: Samaritan House Ph II Collection Date: 10/04/22 10:29 Lab ID: H22100108-004 DateReceived: 10/05/22 Client Sample ID: 220512-SB2-2 Matrix: Soil

Analyses	Result	Units	Qualifiers	RL	MCL/	Method	Analysis Date / By
,			444				7.1.1.1.ye.e 2.1.10, 2.y
PHYSICAL CHARACTERISTICS							
Moisture	19.5	wt%		0.2		D2974	10/06/22 08:50 / jjp
3050 EXTRACTABLE METALS							
Arsenic	6	mg/kg-dry		1		SW6020	10/07/22 12:24 / dck
Barium		mg/kg-dry	D	4		SW6020	10/10/22 09:53 / dck
Cadmium		mg/kg-dry		1		SW6020	10/07/22 12:24 / dck
Chromium	27	mg/kg-dry		2		SW6020	10/07/22 12:24 / dck
Lead	16	mg/kg-dry		1		SW6020	10/07/22 12:24 / dck
Selenium	ND	mg/kg-dry		1		SW6020	10/07/22 12:24 / dck
Silver	ND	mg/kg-dry		1		SW6020	10/07/22 12:24 / dck
METALS, TOTAL							
Mercury	ND	mg/kg-dry		0.50		SW7471B	10/07/22 12:22 / kjb
VOLATILE ORGANIC COMPOUNDS							
Bromoform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Benzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Bromobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Bromochloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Bromodichloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Bromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Carbon tetrachloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Chlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Chloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
2-Chloroethyl vinyl ether	ND	mg/kg-dry		0.20		SW8260B	10/12/22 21:23 / tmj
Chloroform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Chloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
2-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
4-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Chlorodibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,2-Dibromoethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Dibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,2-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,3-Dichlorobenzene	ND	0 0 ,		0.20		SW8260B	10/12/22 02:51 / tmj
1,4-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Dichlorodifluoromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,1-Dichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,2-Dichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
cis-1,2-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,1-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
trans-1,2-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,2-Dichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,3-Dichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
2,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

D - Reporting Limit (RL) increased due to sample matrix

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Project: Samaritan House Ph II Collection Date: 10/04/22 10:29 Lab ID: H22100108-004 DateReceived: 10/05/22 Client Sample ID: 220512-SB2-2 Matrix: Soil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
1,1-Dichloropropene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
cis-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
trans-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Ethylbenzene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Methyl tert-butyl ether (MTBE)		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Methylene chloride		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Methyl ethyl ketone		mg/kg-dry		4.0		SW8260B	10/12/22 02:51 / tmj
Styrene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,1,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,1,2,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Tetrachloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Toluene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,1,1-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,1,2-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Trichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Trichlorofluoromethane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
1,2,3-Trichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Vinyl chloride		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
m+p-Xylenes		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
o-Xylene		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Xylenes, Total		mg/kg-dry		0.20		SW8260B	10/12/22 02:51 / tmj
Surr: p-Bromofluorobenzene		%REC		60-143		SW8260B	10/12/22 02:51 / tmj
Surr: Dibromofluoromethane	88.0	%REC		71-135		SW8260B	10/12/22 02:51 / tmj
Surr: 1,2-Dichloroethane-d4	86.0	%REC		65-147		SW8260B	10/12/22 02:51 / tmj
Surr: Toluene-d8	89.0	%REC		76-133		SW8260B	10/12/22 02:51 / tmj
PETROLEUM HYDROCARBONS-VOLAT	TILE (VPH))					
Methyl tert-butyl ether (MTBE)	ND	mg/kg-dry		0.12	0.078	MA-VPH	10/12/22 09:24 / GMS
Benzene	ND	mg/kg-dry		0.062	0.07	MA-VPH	10/12/22 09:24 / GMS
Toluene	ND	mg/kg-dry		0.062	21	MA-VPH	10/12/22 09:24 / GMS
Ethylbenzene	ND	mg/kg-dry		0.062	6.4	MA-VPH	10/12/22 09:24 / GMS
m+p-Xylenes	ND	mg/kg-dry		0.062		MA-VPH	10/12/22 09:24 / GMS
o-Xylene	ND	mg/kg-dry		0.062		MA-VPH	10/12/22 09:24 / GMS
Xylenes, Total	ND	mg/kg-dry		0.062	72	MA-VPH	10/12/22 09:24 / GMS
Naphthalene	ND	mg/kg-dry		0.12	2.2	MA-VPH	10/12/22 09:24 / GMS
C9 to C10 Aromatics		mg/kg-dry		2.5	130	MA-VPH	10/12/22 09:24 / GMS
C5 to C8 Aliphatics		mg/kg-dry		2.5	52	MA-VPH	10/12/22 09:24 / GMS
C9 to C12 Aliphatics		mg/kg-dry		2.5	77	MA-VPH	10/12/22 09:24 / GMS
Total Purgeable Hydrocarbons		mg/kg-dry		2.5	100	MA-VPH	10/12/22 09:24 / GMS
Surr: VPH Aromatics Surrogate	91.0	%REC		70-130		MA-VPH	10/12/22 09:24 / GMS
Surr: VPH Aliphatics Surrogate	93.0	%REC		70-130		MA-VPH	10/12/22 09:24 / GMS

- Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Project: Samaritan House Ph II Collection Date: 10/04/22 10:29 Lab ID: H22100108-004 DateReceived: 10/05/22 Client Sample ID: 220512-SB2-2

Matrix: Soil

Analyses EXTRACTABLE PETROLEUM HYDROCAI	Result		Qualifiers ANALYSIS	RL	MCL/ QCL	Method	Analysis Date / By		
Total Extractable Hydrocarbons	ND	mg/kg-dry		20	200	SW8015M	10/06/22 18:56 / jdh		
Surr: o-Terphenyl	89.0	%REC		40-140		SW8015M	10/06/22 18:56 / jdh		
- Note: Total Extractable Hydrocarbons are defined as the total hydrocarbon responses regardless of elution time.									

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 09:16

 Lab ID:
 H22100108-005
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB3-1
 Matrix:
 Soil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Moisture	4.8	wt%		0.2		D2974	10/06/22 08:50 / jjp
3050 EXTRACTABLE METALS							<i>"</i>
Arsenic	17	ma/ka da		1		SW6020	10/10/22 10:00 / dck
Barium		mg/kg-dry mg/kg-dry		1		SW6020	10/11/22 11:37 / dck
Cadmium	ND			1		SW6020	10/11/22 11:37 / dck 10/10/22 10:00 / dck
Chromium		mg/kg-dry		1		SW6020	10/10/22 10:00 / dck
Lead	41	mg/kg-dry		1		SW6020	10/10/22 10:00 / dck
Selenium	ND	mg/kg-dry		1		SW6020	10/10/22 10:00 / dck 10/10/22 10:00 / dck
Silver		mg/kg-dry		1		SW6020	10/10/22 10:00 / dck 10/10/22 10:00 / dck
Silver	ND	ilig/kg-diy		'		3770020	10/10/22 10:00 / dck
METALS, TOTAL							
Mercury	ND	mg/kg-dry		0.50		SW7471B	10/07/22 12:24 / kjb
VOLATILE ORGANIC COMPOUNDS							
Bromoform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Benzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Bromobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Bromochloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Bromodichloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Bromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Carbon tetrachloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Chlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Chloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
2-Chloroethyl vinyl ether	ND	mg/kg-dry		0.20		SW8260B	10/12/22 21:54 / tmj
Chloroform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Chloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
2-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
4-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Chlorodibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,2-Dibromoethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Dibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,2-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,3-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,4-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Dichlorodifluoromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,1-Dichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,2-Dichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
cis-1,2-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,1-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
trans-1,2-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,3-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
2,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 09:16

 Lab ID:
 H22100108-005
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB3-1
 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
1,1-Dichloropropene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
cis-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
trans-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Ethylbenzene		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Methyl tert-butyl ether (MTBE)		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Methylene chloride		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Methyl ethyl ketone		mg/kg-dry		4.0		SW8260B	10/12/22 03:23 / tmj
Styrene		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,1,1,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,1,2,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Tetrachloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Toluene		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,1,1-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
1,1,2-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Trichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
Trichlorofluoromethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
				0.20		SW8260B	10/12/22 03:23 / tmj
1,2,3-Trichloropropane Vinyl chloride		mg/kg-dry mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
m+p-Xylenes		mg/kg-dry		0.20		SW8260B	10/12/22 03:23 / tmj
		0 0 ,		0.20		SW8260B	
o-Xylene		mg/kg-dry					10/12/22 03:23 / tmj
Xylenes, Total		mg/kg-dry %REC		0.20		SW8260B	10/12/22 03:23 / tmj
Surr: p-Bromofluorobenzene				60-143		SW8260B	10/12/22 03:23 / tmj
Surr: Dibromofluoromethane		%REC		71-135		SW8260B	10/12/22 03:23 / tmj
Surr: 1,2-Dichloroethane-d4		%REC		65-147		SW8260B	10/12/22 03:23 / tmj
Surr: Toluene-d8	98.0	%REC		76-133		SW8260B	10/12/22 03:23 / tmj
PETROLEUM HYDROCARBONS-VOLA	TILE (VPH)					
Methyl tert-butyl ether (MTBE)	ND	mg/kg-dry		0.10	0.078	MA-VPH	10/14/22 07:18 / GMS
Benzene	ND	mg/kg-dry		0.052	0.07	MA-VPH	10/14/22 07:18 / GMS
Toluene	ND	mg/kg-dry		0.052	21	MA-VPH	10/14/22 07:18 / GMS
Ethylbenzene	ND	mg/kg-dry		0.052	6.4	MA-VPH	10/14/22 07:18 / GMS
m+p-Xylenes	ND	mg/kg-dry		0.052		MA-VPH	10/14/22 07:18 / GMS
o-Xylene	ND	mg/kg-dry		0.052		MA-VPH	10/14/22 07:18 / GMS
Xylenes, Total	ND	mg/kg-dry		0.052	72	MA-VPH	10/14/22 07:18 / GMS
Naphthalene	ND	mg/kg-dry		0.10	2.2	MA-VPH	10/14/22 07:18 / GMS
C9 to C10 Aromatics	ND	mg/kg-dry		2.1	130	MA-VPH	10/14/22 07:18 / GMS
C5 to C8 Aliphatics		mg/kg-dry		2.1	52	MA-VPH	10/14/22 07:18 / GMS
C9 to C12 Aliphatics		mg/kg-dry		2.1	77	MA-VPH	10/14/22 07:18 / GMS
Total Purgeable Hydrocarbons		mg/kg-dry		2.1	100	MA-VPH	10/14/22 07:18 / GMS
Surr: VPH Aromatics Surrogate	92.0	%REC		70-130		MA-VPH	10/14/22 07:18 / GMS
Surr: VPH Aliphatics Surrogate	104	%REC		70-130		MA-VPH	10/14/22 07:18 / GMS
			_				

⁻ Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.

Report RL - Analyte Reporting Limit

CL - Quality Control Limit ND - Not detected at the

Definitions: QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

⁻ Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 09:16

 Lab ID:
 H22100108-005
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB3-1
 Matrix:
 Soil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By			
EXTRACTABLE PETROLEUM HYDROCARBONS-SCREEN ANALYSIS										
Total Extractable Hydrocarbons	826	mg/kg-dry	*	52	200	SW8015M	10/06/22 22:48 / jdh			
Surr: o-Terphenyl	77.0	%REC		40-140		SW8015M	10/06/22 22:48 / jdh			
- Note: Total Extractable Hydrocarbons are defined	as the total h	nydrocarbon r	esponses rega	rdless of elu	ition time.					
EXTRACTABLE PETROLEUM HYDROCA	ARBONS	(EPH)								
C9 to C18 Aliphatics	ND	mg/kg-dry		10	110	MA-EPH	10/17/22 19:04 / kmm			
C19 to C36 Aliphatics	165	mg/kg-dry		10	24000	MA-EPH	10/17/22 19:04 / kmm			
Surr: 1-Chloro-octadecane	66.0	%REC		40-140		MA-EPH	10/17/22 19:04 / kmm			
C11 to C22 Aromatics	129	mg/kg-dry		10	370	MA-EPH	10/17/22 19:47 / kmm			
Total Extractable Hydrocarbons	472	mg/kg-dry		10		MA-EPH	10/17/22 19:47 / kmm			
Surr: 2-Bromonaphthalene	70.0	%REC		40-140		MA-EPH	10/17/22 19:47 / kmm			
Surr: 2-Fluorobiphenyl	79.0	%REC		40-140		MA-EPH	10/17/22 19:47 / kmm			
Surr: o-Terphenyl	68.0	%REC		40-140		MA-EPH	10/17/22 19:47 / kmm			

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level
ND - Not detected at the Reporting Limit (RL)

* - The result exceeds the Maximum Contaminant Level

(MCL)

Page 19 of 101

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 09:26

 Lab ID:
 H22100108-006
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB3-2
 Matrix:
 Soil

	MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
PHYSICAL CHARACTERISTICS								
Moisture	21.5	wt%		0.2		D2974	10/06/22 08:50 / jjp	
3050 EXTRACTABLE METALS								
Arsenic	7	mg/kg-dry		1		SW6020	10/07/22 12:27 / dck	
Barium		mg/kg-dry	D	4		SW6020	10/10/22 09:55 / dck	
Cadmium		mg/kg-dry		1		SW6020	10/07/22 12:27 / dck	
Chromium	21	mg/kg-dry		2		SW6020	10/07/22 12:27 / dck	
Lead	13	mg/kg-dry		1		SW6020	10/07/22 12:27 / dck	
Selenium	ND	mg/kg-dry		1		SW6020	10/07/22 12:27 / dck	
Silver	ND	mg/kg-dry		1		SW6020	10/07/22 12:27 / dck	
METALS, TOTAL								
Mercury	ND	mg/kg-dry		0.50		SW7471B	10/07/22 12:26 / kjb	
VOLATILE ORGANIC COMPOUNDS								
Bromoform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Benzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Bromobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Bromochloromethane	ND	0 0 ,		0.20		SW8260B	10/12/22 03:55 / tmj	
Bromodichloromethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Bromomethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Carbon tetrachloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Chlorobenzene	ND	0 0 ,		0.20		SW8260B	10/12/22 03:55 / tmj	
Chloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
2-Chloroethyl vinyl ether	ND	0 0 ,		0.20		SW8260B	10/12/22 22:26 / tmj	
Chloroform Chloromethane	ND	mg/kg-dry		0.20 0.20		SW8260B	10/12/22 03:55 / tmj 10/12/22 03:55 / tmj	
2-Chlorotoluene	ND ND	mg/kg-dry mg/kg-dry		0.20		SW8260B SW8260B	10/12/22 03:55 / tmj	
4-Chlorotoluene	ND ND			0.20		SW8260B	10/12/22 03:55 / tmj	
Chlorodibromomethane	ND ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
1.2-Dibromoethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Dibromomethane	ND			0.20		SW8260B	10/12/22 03:55 / tmj	
1,2-Dichlorobenzene	ND			0.20		SW8260B	10/12/22 03:55 / tmj	
1,3-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
1,4-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
Dichlorodifluoromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
1,1-Dichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
1,2-Dichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
cis-1,2-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
1,1-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
trans-1,2-Dichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
1,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
1,3-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	
2,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj	

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

D - Reporting Limit (RL) increased due to sample matrix

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Project: Samaritan House Ph II Collection Date: 10/04/22 09:26 Lab ID: H22100108-006 DateReceived: 10/05/22 Client Sample ID: 220512-SB3-2 Matrix: Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
1,1-Dichloropropene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
cis-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
trans-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Ethylbenzene	ND	0 0 ,		0.20		SW8260B	10/12/22 03:55 / tmj
Methyl tert-butyl ether (MTBE)		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Methylene chloride		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Methyl ethyl ketone		mg/kg-dry		4.0		SW8260B	10/12/22 03:55 / tmj
Styrene		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
1,1,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
1,1,2,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Tetrachloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Toluene		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
1,1,1-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
1,1,2-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Trichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Trichlorofluoromethane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
1,2,3-Trichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Vinyl chloride		mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
m+p-Xylenes	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
o-Xylene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Xylenes, Total	ND	mg/kg-dry		0.20		SW8260B	10/12/22 03:55 / tmj
Surr: p-Bromofluorobenzene	88.0	%REC		60-143		SW8260B	10/12/22 03:55 / tmj
Surr: Dibromofluoromethane	83.0	%REC		71-135		SW8260B	10/12/22 03:55 / tmj
Surr: 1,2-Dichloroethane-d4	81.0	%REC		65-147		SW8260B	10/12/22 03:55 / tmj
Surr: Toluene-d8	85.0	%REC		76-133		SW8260B	10/12/22 03:55 / tmj
PETROLEUM HYDROCARBONS-VOLATI	•	,					
Methyl tert-butyl ether (MTBE)	ND	mg/kg-dry		0.13	0.078	MA-VPH	10/14/22 03:14 / GMS
Benzene	ND	mg/kg-dry		0.064	0.07	MA-VPH	10/14/22 03:14 / GMS
Toluene	ND	mg/kg-dry		0.064	21	MA-VPH	10/14/22 03:14 / GMS
Ethylbenzene	ND	mg/kg-dry		0.064	6.4	MA-VPH	10/14/22 03:14 / GMS
m+p-Xylenes	ND	mg/kg-dry		0.064		MA-VPH	10/14/22 03:14 / GMS
o-Xylene	ND	mg/kg-dry		0.064		MA-VPH	10/14/22 03:14 / GMS
Xylenes, Total	ND	mg/kg-dry		0.064	72	MA-VPH	10/14/22 03:14 / GMS
Naphthalene	ND	mg/kg-dry		0.13	2.2	MA-VPH	10/14/22 03:14 / GMS
C9 to C10 Aromatics	ND	mg/kg-dry		2.5	130	MA-VPH	10/14/22 03:14 / GMS
C5 to C8 Aliphatics	ND	mg/kg-dry		2.5	52	MA-VPH	10/14/22 03:14 / GMS
C9 to C12 Aliphatics	ND	mg/kg-dry		2.5	77	MA-VPH	10/14/22 03:14 / GMS
Total Purgeable Hydrocarbons	ND	mg/kg-dry		2.5	100	MA-VPH	10/14/22 03:14 / GMS
Surr: VPH Aromatics Surrogate	83.0	%REC		70-130		MA-VPH	10/14/22 03:14 / GMS
Surr: VPH Aliphatics Surrogate	85.0	%REC		70-130		MA-VPH	10/14/22 03:14 / GMS

⁻ Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 09:26

 Lab ID:
 H22100108-006
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB3-2
 Matrix:
 Soil

Analyses	Result Units	Qualifiers	RL	QCL Method	Analysis Date / By
----------	--------------	------------	----	------------	--------------------

EXTRACTABLE PETROLEUM HYDROCARBONS-SCREEN ANALYSIS

Total Extractable Hydrocarbons ND mg/kg-dry 20 200 SW8015M 10/06/22 19:42 / jdh Surr: o-Terphenyl 109 %REC 40-140 SW8015M 10/06/22 19:42 / jdh

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note: Total Extractable Hydrocarbons are defined as the total hydrocarbon responses regardless of elution time.

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 08:10

 Lab ID:
 H22100108-007
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB4-2
 Matrix:
 Soil

Analyses	Result	Unite	Qualifiers	RL	MCL/	Method	Analysis Date / By
Allalyses	Nesuit	Offics	Qualifiers	INL	QOL	Wetriou	Allalysis Date / Dy
PHYSICAL CHARACTERISTICS							
Moisture	19.9	wt%		0.2		D2974	10/06/22 08:50 / jjp
3050 EXTRACTABLE METALS							
Arsenic	6	mg/kg-dry		1		SW6020	10/07/22 12:29 / dck
Barium		mg/kg-dry	D	4		SW6020	10/10/22 09:58 / dck
Cadmium		mg/kg-dry		1		SW6020	10/07/22 12:29 / dck
Chromium		mg/kg-dry		1		SW6020	10/07/22 12:29 / dck
Lead	16	mg/kg-dry		1		SW6020	10/07/22 12:29 / dck
Selenium	ND	mg/kg-dry		1		SW6020	10/07/22 12:29 / dck
Silver	ND	mg/kg-dry		1		SW6020	10/07/22 12:29 / dck
METALS, TOTAL							
Mercury	ND	mg/kg-dry		0.50		SW7471B	10/07/22 12:29 / kjb
VOLATILE ORGANIC COMPOUNDS							
Bromoform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Benzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Bromobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Bromochloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Bromodichloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Bromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Carbon tetrachloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Chlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Chloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
2-Chloroethyl vinyl ether	ND	mg/kg-dry		0.20		SW8260B	10/12/22 22:57 / tmj
Chloroform	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Chloromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
2-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
4-Chlorotoluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Chlorodibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,2-Dibromoethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Dibromomethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,2-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,3-Dichlorobenzene	ND	0 0 ,		0.20		SW8260B	10/12/22 04:27 / tmj
1,4-Dichlorobenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Dichlorodifluoromethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,1-Dichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,2-Dichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
cis-1,2-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,1-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
trans-1,2-Dichloroethene		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,2-Dichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,3-Dichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
2,2-Dichloropropane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

D - Reporting Limit (RL) increased due to sample matrix

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 08:10

 Lab ID:
 H22100108-007
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB4-2
 Matrix:
 Soil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
1,1-Dichloropropene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
cis-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
trans-1,3-Dichloropropene		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Ethylbenzene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Methyl tert-butyl ether (MTBE)	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Methylene chloride	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Methyl ethyl ketone	ND	mg/kg-dry		4.0		SW8260B	10/12/22 04:27 / tmj
Styrene		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,1,2-Tetrachloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,1,2,2-Tetrachloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Tetrachloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Toluene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,1,1-Trichloroethane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,1,2-Trichloroethane	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Trichloroethene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Trichlorofluoromethane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
1,2,3-Trichloropropane		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Vinyl chloride		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
m+p-Xylenes	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
o-Xylene	ND	mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Xylenes, Total		mg/kg-dry		0.20		SW8260B	10/12/22 04:27 / tmj
Surr: p-Bromofluorobenzene	82.0	%REC		60-143		SW8260B	10/12/22 04:27 / tmj
Surr: Dibromofluoromethane	79.0	%REC		71-135		SW8260B	10/12/22 04:27 / tmj
Surr: 1,2-Dichloroethane-d4	78.0	%REC		65-147		SW8260B	10/12/22 04:27 / tmj
Surr: Toluene-d8	79.0	%REC		76-133		SW8260B	10/12/22 04:27 / tmj
PETROLEUM HYDROCARBONS-VOLAT	TILE (VPH))					
Methyl tert-butyl ether (MTBE)	ND	mg/kg-dry		0.13	0.078	MA-VPH	10/14/22 03:45 / GMS
Benzene	ND	mg/kg-dry		0.063	0.07	MA-VPH	10/14/22 03:45 / GMS
Toluene	ND	mg/kg-dry		0.063	21	MA-VPH	10/14/22 03:45 / GMS
Ethylbenzene	ND	mg/kg-dry		0.063	6.4	MA-VPH	10/14/22 03:45 / GMS
m+p-Xylenes	ND	mg/kg-dry		0.063		MA-VPH	10/14/22 03:45 / GMS
o-Xylene	ND	mg/kg-dry		0.063		MA-VPH	10/14/22 03:45 / GMS
Xylenes, Total	ND	mg/kg-dry		0.063	72	MA-VPH	10/14/22 03:45 / GMS
Naphthalene	ND	mg/kg-dry		0.13	2.2	MA-VPH	10/14/22 03:45 / GMS
C9 to C10 Aromatics	ND	mg/kg-dry		2.5	130	MA-VPH	10/14/22 03:45 / GMS
C5 to C8 Aliphatics		mg/kg-dry		2.5	52	MA-VPH	10/14/22 03:45 / GMS
C9 to C12 Aliphatics		mg/kg-dry		2.5	77	MA-VPH	10/14/22 03:45 / GMS
Total Purgeable Hydrocarbons		mg/kg-dry		2.5	100	MA-VPH	10/14/22 03:45 / GMS
Surr: VPH Aromatics Surrogate	80.0	%REC		70-130		MA-VPH	10/14/22 03:45 / GMS
Surr: VPH Aliphatics Surrogate	81.0	%REC		70-130		MA-VPH	10/14/22 03:45 / GMS

- Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.

Report RL - Analyte Reporting Limit

MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit

⁻ Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 08:10

 Lab ID:
 H22100108-007
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SB4-2
 Matrix:
 Soil

MCL/

Analyses Result Units Qualifiers RL QCL Method Analysis Date / By

EXTRACTABLE PETROLEUM HYDROCARBONS-SCREEN ANALYSIS

 Total Extractable Hydrocarbons
 ND mg/kg-dry
 20
 200
 SW8015M
 10/06/22 20:28 / jdh

 Surr: o-Terphenyl
 90.0 %REC
 40-140
 SW8015M
 10/06/22 20:28 / jdh

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

⁻ Note: Total Extractable Hydrocarbons are defined as the total hydrocarbon responses regardless of elution time.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 11:30

 Lab ID:
 H22100108-008
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SW1
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS, TOTAL RECOVERABLE							
Arsenic	ND	mg/L		0.001		SW6020	10/10/22 23:26 / dck
Barium		mg/L		0.05		SW6020	10/10/22 23:26 / dck
Cadmium		mg/L		0.001		SW6020	10/10/22 23:26 / dck
Chromium		mg/L		0.005		SW6020	10/10/22 23:26 / dck
Lead		mg/L		0.001		SW6020	10/10/22 23:26 / dck
Selenium		mg/L		0.001		SW6020	10/10/22 23:26 / dck
Silver		mg/L		0.001		SW6020	10/10/22 23:26 / dck
METALS, TOTAL							
Mercury	ND	mg/L		0.0001		SW7470A	10/06/22 15:54 / cfg
VOLATILE ORGANIC COMPOUNDS							
Benzene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Bromobenzene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Bromochloromethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Bromodichloromethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Bromoform	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Bromomethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Carbon tetrachloride		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Chlorobenzene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Chlorodibromomethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Chloroethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Chloroform	0.37	-	J	1.0		SW8260B	10/05/22 13:59 / tmj
Chloromethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,2-Dibromoethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
2-Chlorotoluene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
4-Chlorotoluene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Dibromomethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,2-Dichlorobenzene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,3-Dichlorobenzene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,4-Dichlorobenzene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Dichlorodifluoromethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,1-Dichloroethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,2-Dichloroethane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,1-Dichloroethene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
cis-1,2-Dichloroethene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmi
trans-1,2-Dichloroethene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,2-Dichloropropane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,3-Dichloropropane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
2,2-Dichloropropane		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,1-Dichloropropene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
cis-1,3-Dichloropropene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
trans-1,3-Dichloropropene		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Tano 1,0 Diomoropropene	שויו	ug/L		1.0		34402000	10/00/22 10.00 / tillj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 10/31/22** Samaritan House Ph II Collection Date: 10/04/22 11:30 **Project:** Lab ID: H22100108-008 DateReceived: 10/05/22 Client Sample ID: 220512-SW1 Matrix: Aqueous

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Ethylbenzene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Methyl ethyl ketone		ug/L		20		SW8260B	10/05/22 13:59 / tmj
Methyl tert-butyl ether (MTBE)		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Methylene chloride		ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Styrene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,1,1,2-Tetrachloroethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,1,2,2-Tetrachloroethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Tetrachloroethene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Toluene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,1,1-Trichloroethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,1,2-Trichloroethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Trichloroethene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Trichlorofluoromethane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
1,2,3-Trichloropropane	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Vinyl chloride	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
m+p-Xylenes	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
o-Xylene	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Xylenes, Total	ND	ug/L		1.0		SW8260B	10/05/22 13:59 / tmj
Surr: Dibromofluoromethane	98.0	%REC		70-125		SW8260B	10/05/22 13:59 / tmj
Surr: 1,2-Dichloroethane-d4	105	%REC		69-131		SW8260B	10/05/22 13:59 / tmj
Surr: Toluene-d8	86.0	%REC		80-119		SW8260B	10/05/22 13:59 / tmj
Surr: p-Bromofluorobenzene	109	%REC		76-123		SW8260B	10/05/22 13:59 / tmj
PETROLEUM HYDROCARBONS-VOLATI	LE (VPH)					
Methyl tert-butyl ether (MTBE)	ND	ug/L		1.0	30	MA-VPH	10/10/22 18:37 / GMS
Benzene	ND	ug/L		0.50	5	MA-VPH	10/10/22 18:37 / GMS
Toluene	ND	ug/L		0.50	1000	MA-VPH	10/10/22 18:37 / GMS
Ethylbenzene	ND	ug/L		0.50	700	MA-VPH	10/10/22 18:37 / GMS
m+p-Xylenes	ND	ug/L		0.50		MA-VPH	10/10/22 18:37 / GMS
o-Xylene	ND	ug/L		0.50		MA-VPH	10/10/22 18:37 / GMS
Xylenes, Total	ND	ug/L		0.50	10000	MA-VPH	10/10/22 18:37 / GMS
Naphthalene	ND	ug/L		1.0	100	MA-VPH	10/10/22 18:37 / GMS
C9 to C10 Aromatics	ND	ug/L		20	1100	MA-VPH	10/10/22 18:37 / GMS
C5 to C8 Aliphatics	ND	ug/L		20	650	MA-VPH	10/10/22 18:37 / GMS
C9 to C12 Aliphatics	ND	ug/L		20	1400	MA-VPH	10/10/22 18:37 / GMS
Total Purgeable Hydrocarbons		ug/L		20		MA-VPH	10/10/22 18:37 / GMS
Surr: VPH Aromatics Surrogate		%REC		70-130		MA-VPH	10/10/22 18:37 / GMS
Surr: VPH Aliphatics Surrogate	106	%REC		70-130		MA-VPH	10/10/22 18:37 / GMS

EXTRACTABLE PETROLEUM HYDROCARBONS-SCREEN ANALYSIS

Total Extractable Hydrocarbons	ND ug/L	322 10	00 SW8015M	10/05/22 21:51 / jdh
Surr: o-Terphenyl	88.0 %REC	40-140	SW8015M	10/05/22 21:51 / jdh

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

Note 1: The C5 to C8 Aliphatics value is corrected for aromatic constituents Benzene and Toluene.
 Note 2: The C9 to C12 Aliphatics value is corrected for aromatic constituents Ethylbenzene, m+p-Xylenes, o-Xylene and C9 to C10 Aromatics.

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 11:30

 Lab ID:
 H22100108-008
 DateReceived:
 10/05/22

 Client Sample ID:
 220512-SW1
 Matrix:
 Aqueous

MCL/

Analyses Result Units Qualifiers RL QCL Method Analysis Date / By

EXTRACTABLE PETROLEUM HYDROCARBONS-SCREEN ANALYSIS

- Note: Total Extractable Hydrocarbons are defined as the total hydrocarbon responses regardless of elution time.

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 11:30

 Lab ID:
 H22100108-009
 DateReceived:
 10/05/22

 Client Sample ID:
 Trip Blank-11245
 Matrix:
 Trip Blank

			MCL/		
Analyses	Result Unit	s Qualifiers F	L QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS					
Benzene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Bromobenzene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Bromochloromethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Bromodichloromethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Bromoform	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Bromomethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Carbon tetrachloride	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Chlorobenzene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Chlorodibromomethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Chloroethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Chloroform	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Chloromethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
1,2-Dibromoethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
2-Chlorotoluene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
4-Chlorotoluene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Dibromomethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
1,2-Dichlorobenzene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
1,3-Dichlorobenzene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,4-Dichlorobenzene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
Dichlorodifluoromethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
1,1-Dichloroethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
1,2-Dichloroethane	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
1,1-Dichloroethene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj
cis-1,2-Dichloroethene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
trans-1,2-Dichloroethene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,2-Dichloropropane	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,3-Dichloropropane	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
2,2-Dichloropropane	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,1-Dichloropropene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
cis-1,3-Dichloropropene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
trans-1,3-Dichloropropene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
Ethylbenzene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
Methyl ethyl ketone	ND ug/L		20	SW8260B	10/05/22 16:16 / tmj
Methyl tert-butyl ether (MTBE)	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
Methylene chloride	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
Styrene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,1,1,2-Tetrachloroethane	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,1,2,2-Tetrachloroethane	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
Tetrachloroethene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
Toluene	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,1,1-Trichloroethane	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
1,1,2-Trichloroethane	ND ug/L		.0	SW8260B	10/05/22 16:16 / tmj
Trichloroethene	ND ug/L	. 1	.0	SW8260B	10/05/22 16:16 / tmj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Client:
 WGM Group Inc
 Report Date:
 10/31/22

 Project:
 Samaritan House Ph II
 Collection Date:
 10/04/22 11:30

 Lab ID:
 H22100108-009
 DateReceived:
 10/05/22

 Client Sample ID:
 Trip Blank-11245
 Matrix:
 Trip Blank

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Trichlorofluoromethane	ND	ug/L		1.0		SW8260B	10/05/22 16:16 / tmj
1,2,3-Trichloropropane	ND	ug/L		1.0		SW8260B	10/05/22 16:16 / tmj
Vinyl chloride	ND	ug/L		1.0		SW8260B	10/05/22 16:16 / tmj
m+p-Xylenes	ND	ug/L		1.0		SW8260B	10/05/22 16:16 / tmj
o-Xylene	ND	ug/L		1.0		SW8260B	10/05/22 16:16 / tmj
Xylenes, Total	ND	ug/L		1.0		SW8260B	10/05/22 16:16 / tmj
Surr: Dibromofluoromethane	102	%REC		70-125		SW8260B	10/05/22 16:16 / tmj
Surr: 1,2-Dichloroethane-d4	108	%REC		69-131		SW8260B	10/05/22 16:16 / tmj
Surr: Toluene-d8	84.0	%REC		80-119		SW8260B	10/05/22 16:16 / tmj
Surr: p-Bromofluorobenzene	108	%REC		76-123		SW8260B	10/05/22 16:16 / tmj

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte Count Result Units RL %REC Low Limit High Limit RPD RPDLimit Qual

Method: D2974 Batch: PMOIST_221006_A

 Lab ID:
 H22100108-007A DUP
 Sample Duplicate
 Run: SOIL DRYING OVEN 2_22100
 10/06/22 08:50

 Moisture
 20.2
 wt%
 0.20
 1.6
 20

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	MA-EPH									Bat	ch: 63895
Lab ID:	MB-63895-63743	3 Me	thod Blank				Run: HP3B	_221016A		10/17	/22 09:04
C9 to C18	Aliphatics		ND	mg/kg	10						
C19 to C36	6 Aliphatics		ND	mg/kg	10						
Surr: 1-0	Chloro-octadecane				0.17	40	40	140			
Lab ID:	LCS-63895-63743	17 Lat	ooratory Co	ntrol Sample			Run: HP3B	_221016A		10/17	/22 10:30
C9 to C18	Aliphatics		28.3	mg/kg	10	71	40	140			
C19 to C36	6 Aliphatics		47.5	mg/kg	10	89	40	140			
n-Nonane			2.44	mg/kg	0.17	37	30	140			
n-Decane			3.46	mg/kg	0.17	52	40	140			
n-Dodecan	e		4.18	mg/kg	0.17	63	40	140			
n-Tetradec	ane		4.63	mg/kg	0.17	70	40	140			
n-Hexadec	ane		5.07	mg/kg	0.17	76	40	140			
n-Octadeca	ane		5.34	mg/kg	0.17	80	40	140			
n-Nonadec	ane		5.57	mg/kg	0.17	84	40	140			
n-Eicosane	9		5.80	mg/kg	0.17	87	40	140			
n-Docosan	е		5.91	mg/kg	0.17	89	40	140			
n-Tetracos	ane		6.01	mg/kg	0.17	90	40	140			
n-Hexacos	ane		6.01	mg/kg	0.17	90	40	140			
n-Octacosa	ane		5.88	mg/kg	0.17	88	40	140			
n-Triaconta	ane		5.75	mg/kg	0.17	86	40	140			
n-Hexatriad	contane		6.07	mg/kg	0.17	91	40	140			
Surr: 1-0	Chloro-octadecane				0.17	79	40	140			
Lab ID:	H22100037-002AMS	17 Sai	mple Matrix	Spike			Run: HP3B	_221016A		10/17	/22 20:30
C9 to C18	Aliphatics		37.9	mg/kg-dry	13	72	40	140			
C19 to C36	6 Aliphatics		94.8	mg/kg-dry	13	109	40	140			
n-Nonane			3.43	mg/kg-dry	0.22	39	30	140			
n-Decane			4.73	mg/kg-dry	0.22	54	40	140			
n-Dodecan	e		5.61	mg/kg-dry	0.22	64	40	140			
n-Tetradec	ane		6.14	mg/kg-dry	0.22	70	40	140			
n-Hexadec	ane		6.57	mg/kg-dry	0.22	75	40	140			
n-Octadeca	ane		6.98	mg/kg-dry	0.22	80	40	140			
n-Nonadec	ane		7.23	mg/kg-dry	0.22	83	40	140			
n-Eicosane)			mg/kg-dry	0.22	85	40	140			
n-Docosan	е			mg/kg-dry	0.22	85	40	140			
n-Tetracos	ane			mg/kg-dry	0.22	86	40	140			
n-Hexacos				mg/kg-dry	0.22	86	40	140			
n-Octacosa				mg/kg-dry	0.22	83	40	140			
n-Triaconta				mg/kg-dry	0.22	74	40	140			
n-Hexatria				mg/kg-dry	0.22	83	40	140			
	Chloro-octadecane			3-3-7	0.22	71	40	140			
Lab ID:	H22100037-002AMSE) 17 Sai	mple Matrix	Spike Duplicate			Run: HP3B	_221016A		10/17	/22 21:57
C9 to C18	Aliphatics			mg/kg-dry	13	76	40	140	4.2	20	
C19 to C36				mg/kg-dry	13	99	40	140	7.7	20	
	•			mg/kg-dry	0.22	37	30	140	7.3	30	

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte (Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: MA-EPH									Bat	ch: 63895
Lab ID: H22100037-002AMSD	17 Sai	mple Matri	x Spike Duplicat	e		Run: HP3B	_221016A		10/17	/22 21:57
n-Decane			mg/kg-dry	0.22	55	40	140	0.6	20	
n-Dodecane		5.88	mg/kg-dry	0.22	68	40	140	4.7	20	
n-Tetradecane		6.40	mg/kg-dry	0.22	74	40	140	4.1	20	
n-Hexadecane		6.98	mg/kg-dry	0.22	80	40	140	6.1	20	
n-Octadecane		7.54	mg/kg-dry	0.22	87	40	140	7.7	20	
n-Nonadecane		7.80	mg/kg-dry	0.22	90	40	140	7.6	20	
n-Eicosane		8.60	mg/kg-dry	0.22	93	40	140	8.1	20	
n-Docosane		8.24	mg/kg-dry	0.22	94	40	140	8.6	20	
n-Tetracosane		8.42	mg/kg-dry	0.22	96	40	140	9.0	20	
n-Hexacosane		8.43	mg/kg-dry	0.22	95	40	140	8.5	20	
n-Octacosane		8.14	mg/kg-dry	0.22	92	40	140	8.5	20	
n-Triacontane		7.27	mg/kg-dry	0.22	84	40	140	12	20	
n-Hexatriacontane		8.48	mg/kg-dry	0.22	95	40	140	13	20	
Surr: 1-Chloro-octadecane			0 0 7	0.22	80	40	140			
Lab ID: MB-63895-63743	20 Me	thod Blank				Run: HP3B	_221016A		10/17	/22 09:47
C11 to C22 Aromatics		ND	mg/kg	10						
Total Extractable Hydrocarbons		ND	mg/kg	15						
Naphthalene		ND	mg/kg	0.17						
2-MethylNaphthalene		ND	mg/kg	0.17						
Acenaphthylene		ND	mg/kg	0.17						
Acenaphthene		ND	mg/kg	0.17						
Fluorene		ND	mg/kg	0.17						
Phenanthrene		ND	mg/kg	0.17						
Anthracene		ND	mg/kg	0.17						
Fluoranthene		ND	mg/kg	0.17						
Pyrene		ND	mg/kg	0.17						
Benzo(a)Anthracene		ND	mg/kg	0.17						
Chrysene		ND	mg/kg	0.17						
Benzo(b)Fluoranthene/Benzo(k)Flu	orant	ND	mg/kg	0.17						
Benzo(a)Pyrene		0.608	mg/kg	0.17						
Dibenz(a,h)anthracene/Indeno(1,2,3	3-cd)	ND	mg/kg	0.17						
Benzo(g,h,l)perylene	,	ND	mg/kg	0.17						
Surr: 2-Bromonaphthalene			0 0	0.17	87	40	140			
Surr: 2-Fluorobiphenyl				0.17	88	40	140			
Surr: o-Terphenyl				0.17	73	40	140			
Lab ID: LCS-63895-63743	19 Lat	ooratory Co	ontrol Sample			Run: HP3B	_221016A		10/17	/22 11:12
C11 to C22 Aromatics		122	mg/kg	10	102	40	140			
Naphthalene		5.23	mg/kg	0.17	78	40	140			
2-MethylNaphthalene		5.63	mg/kg	0.17	84	40	140			
Acenaphthylene		5.80	mg/kg	0.17	87	40	140			
Acenaphthene		6.08	mg/kg	0.17	91	40	140			
Fluorene		6.09	mg/kg	0.17	91	40	140			
Phenanthrene		6.57	mg/kg	0.17	99	40	140			
			5 5							

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Method: MA-EPH Lab ID: LCS-63895-63743 19 Laboratory Control Sample Run: HP3B_221016A Anthracene 6.52 mg/kg 0.17 98 40 140 Fluoranthene 7.15 mg/kg 0.17 107 40 140 Pyrene 6.89 mg/kg 0.17 103 40 140 Benzo(a)Anthracene 7.32 mg/kg 0.17 110 40 140 Chrysene 6.78 mg/kg 0.17 102 40 140 Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140	ale. 11/01/2	
Lab ID: LCS-63895-63743 19 Laboratory Control Sample Run: HP3B_221016A Anthracene 6.52 mg/kg 0.17 98 40 140 Fluoranthene 7.15 mg/kg 0.17 107 40 140 Pyrene 6.89 mg/kg 0.17 103 40 140 Benzo(a)Anthracene 7.32 mg/kg 0.17 110 40 140 Chrysene 6.78 mg/kg 0.17 102 40 140 Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140	RPD RPDLim	nit Qual
Anthracene 6.52 mg/kg 0.17 98 40 140 Fluoranthene 7.15 mg/kg 0.17 107 40 140 Pyrene 6.89 mg/kg 0.17 103 40 140 Benzo(a)Anthracene 7.32 mg/kg 0.17 110 40 140 Chrysene 6.78 mg/kg 0.17 110 40 140 Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140	E	Batch: 63895
Fluoranthene 7.15 mg/kg 0.17 107 40 140 Pyrene 6.89 mg/kg 0.17 103 40 140 Benzo(a)Anthracene 7.32 mg/kg 0.17 110 40 140 Chrysene 6.78 mg/kg 0.17 102 40 140 Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140	10/	/17/22 11:12
Pyrene 6.89 mg/kg 0.17 103 40 140 Benzo(a)Anthracene 7.32 mg/kg 0.17 110 40 140 Chrysene 6.78 mg/kg 0.17 102 40 140 Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Benzo(a)Anthracene 7.32 mg/kg 0.17 110 40 140 Chrysene 6.78 mg/kg 0.17 102 40 140 Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Chrysene 6.78 mg/kg 0.17 102 40 140 Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Benzo(b)Fluoranthene/Benzo(k)Fluorant 14.9 mg/kg 0.17 113 40 140 Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,I)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Benzo(a)Pyrene 7.68 mg/kg 0.17 115 40 140 Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,I)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 14.4 mg/kg 0.17 109 40 140 Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Benzo(g,h,l)perylene 7.16 mg/kg 0.17 107 40 140 Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Surr: 2-Bromonaphthalene 0.17 86 40 140 Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Surr: 2-Fluorobiphenyl 0.17 91 40 140 Surr: o-Terphenyl 0.17 82 40 140		
Surr: o-Terphenyl 0.17 82 40 140		
Lab ID: H22100037-002AMS 19 Sample Matrix Spike Run: HP3B_221016A	10/	/17/22 21:14
C11 to C22 Aromatics 156 mg/kg-dry 13 90 40 140		
Naphthalene 6.03 mg/kg-dry 0.22 69 40 140		
2-MethylNaphthalene 6.57 mg/kg-dry 0.22 75 40 140		
Acenaphthylene 6.75 mg/kg-dry 0.22 77 40 140		
Acenaphthene 6.99 mg/kg-dry 0.22 80 40 140		
Fluorene 7.09 mg/kg-dry 0.22 81 40 140		
Phenanthrene 7.44 mg/kg-dry 0.22 85 40 140		
Anthracene 7.78 mg/kg-dry 0.22 89 40 140		
Fluoranthene 8.39 mg/kg-dry 0.22 93 40 140		
Pyrene 8.16 mg/kg-dry 0.22 91 40 140		
Benzo(a)Anthracene 8.05 mg/kg-dry 0.22 90 40 140		
Chrysene 8.53 mg/kg-dry 0.22 94 40 140		
Benzo(b)Fluoranthene/Benzo(k)Fluorant 17.8 mg/kg-dry 0.22 102 40 140		
Benzo(a)Pyrene 10.2 mg/kg-dry 0.22 115 40 140		
Dibenz(a,h)anthracene/Indeno(1,2,3-cd) 16.4 mg/kg-dry 0.22 94 40 140		
Benzo(g,h,l)perylene 8.13 mg/kg-dry 0.22 91 40 140		
Surr: 2-Bromonaphthalene 0.22 68 40 140		
Surr: 2-Fluorobiphenyl 0.22 78 40 140		
Surr: o-Terphenyl 0.22 67 40 140		
Lab ID: H22100037-002AMSD 19 Sample Matrix Spike Duplicate Run: HP3B_221016A	10/	/17/22 22:40
	6.5 20	
	1.4 40	
	4.3 20	
	1.1 20	
	1.4 20	
Fluorene 5.85 mg/kg-dry 0.22 67 40 140	19 20	
Phenanthrene 5.42 mg/kg-dry 0.22 62 40 140	31 20	
Anthracene 4.97 mg/kg-dry 0.22 57 40 140	44 20	
3 3 7	2.6 20	
		~
. ,	1.3 20	0

Qualifiers:

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: MA-EPH								Bat	ch: 63895
Lab ID: H22100037-002AMSD 19 Sa	Spike Duplicate			Run: HP3B	_221016A		10/17/	22 22:40	
Benzo(a)Anthracene	4.15	mg/kg-dry	0.22	46	40	140	64	20	R
Chrysene	3.83	mg/kg-dry	0.22	41	40	140	76	20	R
Benzo(b)Fluoranthene/Benzo(k)Fluorant	16.4	mg/kg-dry	0.22	95	40	140	8.2	20	
Benzo(a)Pyrene	8.28	mg/kg-dry	0.22	93	40	140	21	20	R
Dibenz(a,h)anthracene/Indeno(1,2,3-cd)	15.9	mg/kg-dry	0.22	92	40	140	3.0	20	
Benzo(g,h,I)perylene	7.83	mg/kg-dry	0.22	88	40	140	3.8	20	
Surr: 2-Bromonaphthalene			0.22	61	40	140			
Surr: 2-Fluorobiphenyl			0.22	77	40	140			
Surr: o-Terphenyl			0.22	65	40	140			

Qualifiers:

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

								u.o.		
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: MA-EPH								Ar	nalytical Run	: R179353
Lab ID: CCV_1016HP3B	20r-S 15 Co	ntinuing Ca	libration V	erification Standa	rd				10/17	/22 16:12
n-Nonane		6.89	mg/kg	0.17	103	75	125			
n-Decane		6.90	mg/kg	0.17	103	75	125			
n-Dodecane		6.82	mg/kg	0.17	102	75	125			
n-Tetradecane		6.88	mg/kg	0.17	103	75	125			
n-Hexadecane		6.76	mg/kg	0.17	101	75	125			
n-Octadecane		6.76	mg/kg	0.17	101	75	125			
n-Nonadecane		6.76	mg/kg	0.17	101	75	125			
n-Eicosane		6.77	mg/kg	0.17	102	75	125			
n-Docosane		6.70	mg/kg	0.17	101	75	125			
n-Tetracosane		6.77	mg/kg	0.17	102	75	125			
n-Hexacosane		6.80	mg/kg	0.17	102	75	125			
n-Octacosane		6.72	mg/kg	0.17	101	75	125			
n-Triacontane		6.54	mg/kg	0.17	98	75	125			
n-Hexatriacontane		6.82	mg/kg	0.17	102	75	125			
Surr: 1-Chloro-octadecane				0.17	99	75	125			
Lab ID: CCV_1016HP3B	21r-S 18 Co	ntinuing Ca	libration V	erification Standa	rd				10/17	/22 16:55
Naphthalene		7.58	mg/kg	0.17	114	75	125			
2-MethylNaphthalene		7.79	mg/kg	0.17	117	75	125			
Acenaphthylene		7.35	mg/kg	0.17	110	75	125			
Acenaphthene		7.30	mg/kg	0.17	110	75	125			
Fluorene		7.33	mg/kg	0.17	110	75	125			
Phenanthrene		7.44	mg/kg	0.17	112	75	125			
Anthracene		7.24	mg/kg	0.17	109	75	125			
Fluoranthene		7.46	mg/kg	0.17	112	75	125			
Pyrene		7.38	mg/kg	0.17	111	75	125			
Benzo(a)Anthracene		7.68	mg/kg	0.17	115	75	125			
Chrysene		7.37	mg/kg	0.17	111	75	125			
Benzo(b)Fluoranthene/Benzo	(k)Fluorant	15.1	mg/kg	0.17	114	75	125			
Benzo(a)Pyrene		7.92	mg/kg	0.17	119	75	125			
Dibenz(a,h)anthracene/Inden	o(1,2,3-cd)	15.2	mg/kg	0.17	114	75	125			
Benzo(g,h,I)perylene		7.59	mg/kg	0.17	114	75	125			
Surr: 2-Bromonaphthalene				0.17	120	75	125			
Surr: 2-Fluorobiphenyl				0.17	101	75	125			
Surr: o-Terphenyl				0.17	106	75	125			

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: MA-VPH									Bat	ch: 63671
Lab ID: LCS-63671	14 Lab	oratory Co	ontrol Sample			Run: GC2_	221011A		10/12	/22 05:17
2-Methylpentane		1.77	mg/kg	0.10	71	70	130			
n-Butylcyclohexane		2.17	mg/kg	0.10	87	70	130			
n-Decane		2.17	mg/kg	0.10	87	70	130			
n-Pentane		1.68	mg/kg	0.10	67	30	130			
Methyl tert-butyl ether (MTBE)		1.95	mg/kg	0.10	78	70	130			
Benzene		1.93	mg/kg	0.050	77	70	130			
Toluene		2.02	mg/kg	0.050	81	70	130			
Ethylbenzene		2.10	mg/kg	0.050	84	70	130			
m+p-Xylenes		4.28	mg/kg	0.050	86	70	130			
o-Xylene		2.06	mg/kg	0.050	83	70	130			
Naphthalene		2.76	mg/kg	0.10	110	70	130			
Total Purgeable Hydrocarbons		30.8	mg/kg	2.0	82	70	130			
Surr: VPH Aromatics Surrogate)			0.050	97	70	130			
Surr: VPH Aliphatics Surrogate				0.050	97	70	130			
Lab ID: MB-63671	14 Me	thod Blank				Run: GC3_	221005A		10/05	/22 20:47
Methyl tert-butyl ether (MTBE)		ND	mg/kg	0.10						
Benzene		ND	mg/kg	0.050						
Toluene		ND	mg/kg	0.050						
Ethylbenzene		ND	mg/kg	0.050						
m+p-Xylenes		ND	mg/kg	0.050						
o-Xylene		ND	mg/kg	0.050						
Naphthalene		ND	mg/kg	0.10						
C9 to C10 Aromatics		ND	mg/kg	2.0						
C5 to C8 Aliphatics		ND	mg/kg	2.0						
C9 to C12 Aliphatics		ND	mg/kg	2.0						
Total Purgeable Hydrocarbons		ND	mg/kg	2.0						
Xylenes, Total		ND	mg/kg	0.050						
Surr: VPH Aromatics Surrogate)			0.050	101	70	130			
Surr: VPH Aliphatics Surrogate				0.050	104	70	130			
Lab ID: H22090724-001AMS	10 Sar	mple Matri	x Spike			Run: GC3_	221005A		10/06	/22 00:35
Methyl tert-butyl ether (MTBE)		2.53	mg/kg-dry	0.12	88	70	130			
Benzene		2.64	mg/kg-dry	0.058	91	70	130			
Toluene		2.82	mg/kg-dry	0.058	97	70	130			
Ethylbenzene		3.15	mg/kg-dry	0.058	109	70	130			
m+p-Xylenes		6.35	mg/kg-dry	0.058	110	70	130			
o-Xylene		3.28	mg/kg-dry	0.058	114	70	130			
Naphthalene		3.32	mg/kg-dry	0.12	115	70	130			
Total Purgeable Hydrocarbons		47.7	mg/kg-dry	2.3	110	70	130			
Surr: VPH Aromatics Surrogate)			0.058	105	70	130			
Surr: VPH Aliphatics Surrogate				0.058	106	70	130			
Lab ID: H22090724-001AMSI) 10 Sar	mple Matri	x Spike Duplicate			Run: GC3_	221005A		10/06	/22 01:07
Methyl tert-butyl ether (MTBE)		2.58	mg/kg-dry	0.12	89	70	130	1.8	20	
Benzene		2.68	mg/kg-dry	0.058	93	70	130	1.7	20	

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count Resu	lt Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	MA-VPH								Bat	ch: 63671
Lab ID:	H22090724-001AMSE	10 Sample Ma	trix Spike Duplicat	e	1	Run: GC3_2	221005A		10/06/	/22 01:07
Toluene		2.8	4 mg/kg-dry	0.058	98	70	130	0.7	20	
Ethylbenze	ene	3.1	7 mg/kg-dry	0.058	110	70	130	0.6	20	
m+p-Xylen	nes	6.3	0 mg/kg-dry	0.058	109	70	130	0.9	20	
o-Xylene		3.2	4 mg/kg-dry	0.058	112	70	130	1.3	20	
Naphthale	ne	3.2	9 mg/kg-dry	0.12	114	70	130	0.9	20	
Total Purg	eable Hydrocarbons	47.	9 mg/kg-dry	2.3	110	70	130	0.4	20	
Surr: VF	PH Aromatics Surrogate			0.058	109	70	130			
Surr: VF	PH Aliphatics Surrogate			0.058	108	70	130			

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: MA-VPH									Bat	ch: 63823
Lab ID: MB-63823	14 Me	hod Blank				Run: GC2_	221011A		10/12	/22 04:46
Methyl tert-butyl ether (MTBE)		ND	mg/kg	0.10						
Benzene		ND	mg/kg	0.050						
Toluene		ND	mg/kg	0.050						
Ethylbenzene		ND	mg/kg	0.050						
m+p-Xylenes		ND	mg/kg	0.050						
o-Xylene		ND	mg/kg	0.050						
Naphthalene		ND	mg/kg	0.10						
C9 to C10 Aromatics		ND	mg/kg	2.0						
C5 to C8 Aliphatics		ND	mg/kg	2.0						
C9 to C12 Aliphatics		ND	mg/kg	2.0						
Total Purgeable Hydrocarbons		ND	mg/kg	2.0						
Xylenes, Total		ND	mg/kg	0.050						
Surr: VPH Aromatics Surrogate)		3 3	0.050	103	70	130			
Surr: VPH Aliphatics Surrogate				0.050	105	70	130			
Lab ID: LCS-63823	14 Lab	oratory Co 2.09	ontrol Sample	0.10	0.4	Run: GC2_			10/12	/22 05:48
2-Methylpentane			mg/kg	0.10	84	70 70	130			
n-Butylcyclohexane		2.52	mg/kg	0.10	101	70 70	130			
n-Decane n-Pentane		2.50	mg/kg	0.10	100	70	130			
		2.07	mg/kg	0.10	83	30	130			
Methyl tert-butyl ether (MTBE)		2.27	mg/kg	0.10	91	70	130			
Benzene		2.10	mg/kg	0.050	84	70	130			
Toluene		2.15	mg/kg	0.050	86	70	130			
Ethylbenzene		2.26	mg/kg	0.050	90	70	130			
m+p-Xylenes		4.66	mg/kg	0.050	93	70	130			
o-Xylene		2.27	mg/kg	0.050	91	70	130			
Naphthalene Tatal Burnash la Unidea a athan a		3.08	mg/kg	0.10	123	70	130			
Total Purgeable Hydrocarbons		34.3	mg/kg	2.0	92	70	130			
Surr: VPH Aromatics Surrogate				0.050	92	70	130			
Surr: VPH Aliphatics Surrogate				0.050	91	70	130			
Lab ID: H22100108-005AMS	10 Sar	nple Matri	x Spike			Run: GC3_	221013A		10/14	/22 07:51
Methyl tert-butyl ether (MTBE)		2.31	mg/kg-dry	0.10	88	70	130			
Benzene		2.31	mg/kg-dry	0.052	88	70	130			
Toluene		2.47	mg/kg-dry	0.052	94	70	130			
Ethylbenzene		2.74	mg/kg-dry	0.052	105	70	130			
m+p-Xylenes		5.43	mg/kg-dry	0.052	104	70	130			
o-Xylene		2.83	mg/kg-dry	0.052	108	70	130			
Naphthalene		2.47	mg/kg-dry	0.10	94	70	130			
Total Purgeable Hydrocarbons		41.6	mg/kg-dry	2.1	106	70	130			
Surr: VPH Aromatics Surrogate	:			0.052	102	70	130			
Surr: VPH Aliphatics Surrogate				0.052	108	70	130			
Lab ID: H22100108-005AMSI) 10 Sar	nple Matri	x Spike Duplicate			Run: GC3_	221013A		10/14	/22 08:23
Methyl tert-butyl ether (MTBE)			mg/kg-dry	0.10	92	70	130	4.6	20	
Benzene			mg/kg-dry	0.052	91	70	130	3.7	20	
			3 3 ···)							

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count R	esult	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	MA-VPH									Bat	ch: 63823
Lab ID:	H22100108-005AMSE	10 Sample	Matrix	Spike Duplicate			Run: GC3_	221013A		10/14/	22 08:23
Toluene			2.52	mg/kg-dry	0.052	96	70	130	1.8	20	
Ethylbenze	ene		2.79	mg/kg-dry	0.052	106	70	130	1.6	20	
m+p-Xylen	nes		5.43	mg/kg-dry	0.052	104	70	130	0	20	
o-Xylene			2.83	mg/kg-dry	0.052	108	70	130	0	20	
Naphthale	ne		2.52	mg/kg-dry	0.10	96	70	130	2.0	20	
Total Purg	eable Hydrocarbons		42.2	mg/kg-dry	2.1	107	70	130	1.3	20	
Surr: VF	PH Aromatics Surrogate				0.052	106	70	130			
Surr: VF	PH Aliphatics Surrogate				0.052	106	70	130			

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: MA-VPH								Analytical Run:	R17903
Lab ID: CCV_1010GC302r-V	V 15 Con	tinuing Cal	ibration Ve	erification Standa	rd			10/10	/22 11:52
1,2,4-Trimethylbenzene		30.5	ug/L	1.0	122	75	125		
2,2,4-Trimethylpentane		27.8	ug/L	1.0	111	75	125		
2-Methylpentane		27.4	ug/L	1.0	110	75	125		
n-Butylcyclohexane		28.6	ug/L	1.0	114	75	125		
n-Decane		30.3	ug/L	1.0	121	75	125		
n-Pentane		25.7	ug/L	1.0	103	75	125		
Methyl tert-butyl ether (MTBE)		25.5	ug/L	1.0	102	75	125		
Benzene		25.7	ug/L	0.50	103	75	125		
Toluene		26.6	ug/L	0.50	106	75	125		
Ethylbenzene		28.3	ug/L	0.50	113	75	125		
m+p-Xylenes		55.5	ug/L	0.50	111	75	125		
o-Xylene		27.8	ug/L	0.50	111	75	125		
Naphthalene		22.3	ug/L	1.0	89	75	125		
Surr: VPH Aromatics Surrogat	e		Ü	1.0	110	70	130		
Surr: VPH Aliphatics Surrogate				1.0	110	70	130		
Method: MA-VPH								Batch:	R17903
Lab ID: LCS_1010GC303r	16 Lab	oratory Cor	ntrol Samp	ole		Run: GC3_	221010A		/22 12:51
1,2,4-Trimethylbenzene		28.4	ug/L	1.0	114	70	130		
2,2,4-Trimethylpentane		25.7	ug/L	1.0	103	70	130		
2-Methylpentane		26.1	ug/L	1.0	104	70	130		
n-Butylcyclohexane		27.5	ug/L	1.0	110	70	130		
n-Decane		28.4	ug/L	1.0	114	70	130		
n-Pentane		26.6	ug/L	1.0	106	70	130		
Methyl tert-butyl ether (MTBE)		24.3	ug/L	1.0	97	70	130		
Benzene		24.1	ug/L	0.50	96	70	130		
Toluene		24.1	ug/L	0.50	97	70	130		
Ethylbenzene		25.9	ug/L	0.50	104	70	130		
m+p-Xylenes		50.7	ug/L ug/L	0.50	101	70	130		
o-Xylene		25.7	ug/L ug/L	0.50	103	70	130		
Naphthalene		22.1	ug/L	1.0	88	70	130		
Total Purgeable Hydrocarbons		386	ug/L	20	103	70	130		
Surr: VPH Aromatics Surrogat	-	300	ug/L	1.0	103	70 70	130		
Surr: VPH Aliphatics Surrogate				1.0	99	70	130		
Lab ID: MBLK_1010GC305r		had Dlank						40/40	/00 40.5/
Methyl tert-butyl ether (MTBE)	14 IVIET	hod Blank ND	ug/L	1.0		Run: GC3_	22 IU IUA	10/10/	/22 13:56
Benzene		ND ND		0.50					
Toluene		ND ND	ug/L	0.50					
			ug/L						
Ethylbenzene		ND	ug/L	0.50					
m+p-Xylenes		ND	ug/L	0.50					
o-Xylene		ND	ug/L	0.50					
Naphthalene		ND	ug/L	1.0					
C9 to C10 Aromatics		ND	ug/L	20					
C5 to C8 Aliphatics		ND	ug/L	20					

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	MA-VPH									Batch:	R179035
Lab ID:	MBLK_1010GC305r	14 Me	thod Blank				Run: GC3_	221010A		10/10/	/22 13:56
C9 to C12	Aliphatics		ND	ug/L	20						
Total Purg	eable Hydrocarbons		ND	ug/L	20						
Xylenes, T	otal		ND	ug/L	0.50						
Surr: VF	PH Aromatics Surrogate)			1.0	95	70	130			
Surr: VF	PH Aliphatics Surrogate				1.0	95	70	130			
Lab ID:	H22100108-008CMS	10 Sa	mple Matrix	Spike			Run: GC3_	221010A		10/10/	/22 19:09
Methyl terf	t-butyl ether (MTBE)		13.9	ug/L	1.0	56	70	130			S
Benzene			14.1	ug/L	0.50	57	70	130			S
Toluene			14.3	ug/L	0.50	57	70	130			S
Ethylbenze	ene		14.7	ug/L	0.50	59	70	130			S
m+p-Xyler	nes		28.7	ug/L	0.50	57	70	130			S
o-Xylene			15.0	ug/L	0.50	60	70	130			S
Naphthale	ne		12.5	ug/L	1.0	50	70	130			S
Total Purg	eable Hydrocarbons		211	ug/L	20	56	70	130			S
Surr: VF	PH Aromatics Surrogate)			1.0	64	70	130			S
Surr: VF	PH Aliphatics Surrogate				1.0	64	70	130			S
Lab ID:	H22100108-008CMSI	D 10 Sa	mple Matrix	Spike Duplicate			Run: GC3_	221010A		10/10/	/22 19:42
Methyl terf	t-butyl ether (MTBE)		23.0	ug/L	1.0	92	70	130	49	20	R
Benzene			23.2	ug/L	0.50	93	70	130	49	20	R
Toluene			23.5	ug/L	0.50	94	70	130	49	20	R
Ethylbenze	ene		25.0	ug/L	0.50	100	70	130	52	20	R
m+p-Xyler	nes		48.1	ug/L	0.50	96	70	130	51	20	R
o-Xylene			24.8	ug/L	0.50	99	70	130	49	20	R
Naphthale	ne		21.7	ug/L	1.0	87	70	130	54	20	R
Total Purg	eable Hydrocarbons		353	ug/L	20	94	70	130	50	20	R
Surr: VF	PH Aromatics Surrogate)			1.0	98	70	130			
Surr: VF	PH Aliphatics Surrogate				1.0	98	70	130			

Qualifiers:

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

ND - Not detected at the Reporting Limit (RL)

S - Spike recovery outside of advisory limits

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	MA-VPH								Ana	alytical Run:	R179105
Lab ID:	CCV_1011GC202r-S	15 Co	ntinuing Ca	libration Verif	ication Standa	rd				10/11	/22 11:39
1,2,4-Trim	nethylbenzene		2.20	mg/kg	0.10	88	75	125			
2,2,4-Trim	nethylpentane		2.19	mg/kg	0.10	88	75	125			
2-Methylp	entane		2.22	mg/kg	0.10	89	75	125			
n-Butylcy	clohexane		2.06	mg/kg	0.10	82	75	125			
n-Decane			2.05	mg/kg	0.10	82	75	125			
n-Pentane	e		2.23	mg/kg	0.10	89	75	125			
Methyl ter	t-butyl ether (MTBE)		2.26	mg/kg	0.10	90	75	125			
Benzene			2.17	mg/kg	0.050	87	75	125			
Toluene			2.21	mg/kg	0.050	88	75	125			
Ethylbenz	ene		2.16	mg/kg	0.050	86	75	125			
m+p-Xyle	nes		4.39	mg/kg	0.050	88	75	125			
o-Xylene			2.08	mg/kg	0.050	83	75	125			
Naphthale	ene		2.21	mg/kg	0.10	89	75	125			
Surr: V	PH Aromatics Surrogate)			0.050	92	70	130			
Surr: V	PH Aliphatics Surrogate				0.050	89	70	130			
Method:	MA-VPH								Ana	alytical Run:	R179199
Lab ID:	CCV_1013GC202r-S	15 Co	ntinuing Ca	libration Verif	ication Standa	rd				10/13	/22 10:10
1,2,4-Trim	nethylbenzene		2.24	mg/kg	0.10	90	75	125			
2,2,4-Trim	nethylpentane		2.18	mg/kg	0.10	87	75	125			
2-Methylp	entane		2.13	mg/kg	0.10	85	75	125			
n-Butylcy	clohexane		2.13	mg/kg	0.10	85	75	125			
n-Decane			2.08	mg/kg	0.10	83	75	125			
n-Pentane	Э		2.15	mg/kg	0.10	86	75	125			
Methyl ter	t-butyl ether (MTBE)		2.20	mg/kg	0.10	88	75	125			
Benzene			2.12	mg/kg	0.050	85	75	125			
Toluene			2.16	mg/kg	0.050	86	75	125			
Ethylbenz	ene		2.14	mg/kg	0.050	86	75	125			
m+p-Xyle	nes		4.33	mg/kg	0.050	87	75	125			
o-Xylene			2.07	mg/kg	0.050	83	75	125			
Naphthale	ene		2.18	mg/kg	0.10	87	75	125			
Surr: V	PH Aromatics Surrogate)			0.050	90	70	130			
	PH Aliphatics Surrogate				0.050	88	70	130			

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: MA-VPH								Ar	nalytical Run:	R179206
Lab ID: CCV_1013GC302r-S	15 Coi	ntinuing Cal	libration Ve	erification Standa	rd				10/13	/22 10:14
1,2,4-Trimethylbenzene		2.89	mg/kg	0.10	116	75	125			
2,2,4-Trimethylpentane		2.54	mg/kg	0.10	101	75	125			
2-Methylpentane		2.52	mg/kg	0.10	101	75	125			
n-Butylcyclohexane		2.70	mg/kg	0.10	108	75	125			
n-Decane		2.97	mg/kg	0.10	119	75	125			
n-Pentane		2.35	mg/kg	0.10	94	75	125			
Methyl tert-butyl ether (MTBE)		2.31	mg/kg	0.10	92	75	125			
Benzene		2.38	mg/kg	0.050	95	75	125			
Toluene		2.50	mg/kg	0.050	100	75	125			
Ethylbenzene		2.65	mg/kg	0.050	106	75	125			
m+p-Xylenes		5.26	mg/kg	0.050	105	75	125			
o-Xylene		2.64	mg/kg	0.050	106	75	125			
Naphthalene		1.96	mg/kg	0.10	79	75	125			
Surr: VPH Aromatics Surrogate)			0.050	107	70	130			
Surr: VPH Aliphatics Surrogate	:			0.050	107	70	130			

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDL	.imit	Qual
Method:	SW6020							Analytic	al Run: ICPMS2	205-H _.	_221007E
Lab ID:	ICV	7 Initia	al Calibrati	on Verificatio	n Standard					10/07	/22 11:30
Arsenic			0.0614	mg/L	0.0010	102	90	110			
Barium			0.0590	mg/L	0.0010	98	90	110			
Cadmium			0.0305	mg/L	0.0010	102	90	110			
Chromium			0.0597	mg/L	0.0010	100	90	110			
Lead			0.0594	mg/L	0.0010	99	90	110			
Selenium			0.0614	mg/L	0.0010	102	90	110			
Silver			0.0302	mg/L	0.0010	101	90	110			
Lab ID:	ICSA	7 Inte	rference C	heck Sample	· A					10/07	/22 11:37
Arsenic		0.	0000207	mg/L	0.0010						
Barium		(0.000195	mg/L	0.0010						
Cadmium		(0.000106	mg/L	0.0010						
Chromium			0.00190	mg/L	0.0010						
Lead		-(0.000142	mg/L	0.0010						
Selenium		(0.000181	mg/L	0.0010						
Silver		0.	0000117	mg/L	0.0010						
Lab ID:	ICSAB	7 Inte	rference C	heck Sample	AB					10/07	/22 11:42
Arsenic			0.0102	mg/L	0.0010	102	70	130			
Barium		(0.000216	mg/L	0.0010		0	0			
Cadmium			0.0101	mg/L	0.0010	101	70	130			
Chromium			0.0215	mg/L	0.0010	108	70	130			
Lead		-(0.000145	mg/L	0.0010		0	0			
Selenium			0.00948	mg/L	0.0010	95	70	130			
Silver			0.0198	mg/L	0.0010	99	70	130			
Lab ID:	CCV	7 Cor	tinuing Ca	libration Verif	ication Standa	rd				10/07	/22 11:51
Arsenic			0.0488	mg/L	0.0010	98	90	110			
Barium			0.0490	mg/L	0.0010	98	90	110			
Cadmium			0.0493	mg/L	0.0010	99	90	110			
Chromium			0.0480	mg/L	0.0010	96	90	110			
Lead			0.0487	mg/L	0.0010	97	90	110			
Selenium			0.0496	mg/L	0.0010	99	90	110			
Silver			0.0197	mg/L	0.0010	99	90	110			
Method:	SW6020									Bat	tch: 63789
Lab ID:	MB-63789	7 Met	hod Blank				Run: ICPMS	S205-H_221007	7B	10/07	/22 11:55
Arsenic			ND	mg/kg	0.2						
Barium			ND	mg/kg	0.3						
Cadmium			ND	mg/kg	0.04						
Chromium			ND	mg/kg	1						
Lead			ND	mg/kg	0.5						
Selenium			ND	mg/kg	0.1						
Silver			ND	mg/kg	0.7						

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bat	ch: 63789
Lab ID:	LCS-63789	7 Lat	oratory Co	ontrol Sample			Run: ICPM	S205-H_221007B		10/07/	/22 11:58
Arsenic			160	mg/kg	1.0	82	66.4	104			
Barium			179	mg/kg	1.0	96	71.8	124			
Cadmium			99.0	mg/kg	1.0	100	79.2	121			
Chromium			107	mg/kg	3.1	92	72.5	115			
Lead			104	mg/kg	1.3	99	71.6	128			
Selenium			179	mg/kg	1.0	87	72.3	111			
Silver			42.8	mg/kg	1.8	102	70.8	133			
Lab ID:	LFB-63789	7 Lab	oratory Fo	ortified Blank			Run: ICPM	S205-H_221007B		10/07/	/22 12:00
Arsenic			49.2	mg/kg	1.0	100	80	120			
Barium			52.5	mg/kg	1.0	107	80	120			
Cadmium			25.8	mg/kg	1.0	105	80	120			
Chromium			52.1	mg/kg	1.2	106	80	120			
Lead			51.7	mg/kg	1.0	105	80	120			
Selenium			41.6	mg/kg	1.0	85	80	120			
Silver			27.1	mg/kg	1.0	110	80	120			
Lab ID:	H22100108-001ADIL	7 Sei	rial Dilution				Run: ICPM	S205-H_221007B		10/07/	/22 12:07
Arsenic			6.35	mg/kg-dry	1.0		0	0		10	N
Barium			71.1	mg/kg-dry	1.5		0	0	2.9	10	
Cadmium			ND	mg/kg-dry	1.0		0	0		10	
Chromium			10.2	mg/kg-dry	6.7		0	0		10	N
Lead			5.85	mg/kg-dry	2.8		0	0		10	N
Selenium			ND	mg/kg-dry	1.0		0	0		10	
Silver			ND	mg/kg-dry	3.9		0	0		10	
Lab ID:	H22100108-001APDS	1 7 Pos	st Digestion	n/Distillation Spike			Run: ICPM	S205-H_221007B		10/07/	/22 12:10
Arsenic			10.5	mg/kg-dry	1.0	86	75	125			
Barium			77.4	mg/kg-dry	1.0		75	125			Α
Cadmium			5.45	mg/kg-dry	1.0	100	75	125			
Chromium			14.9	mg/kg-dry	1.3	94	75	125			
Lead			11.6	mg/kg-dry	1.0	100	75	125			
Selenium				mg/kg-dry	1.0	84	75	125			
Silver			2.35	mg/kg-dry	1.0	109	75	125			
Lab ID:	H22100108-001AMS	7 Sai	mple Matri	x Spike			Run: ICPM	S205-H_221007B		10/07/	/22 12:12
Arsenic			55.7	mg/kg-dry	1.0	92	75	125			
Barium			154	mg/kg-dry	1.0	149	75	125			SE
Cadmium			27.4	mg/kg-dry	1.0	101	75	125			
Chromium			65.3	mg/kg-dry	1.3	102	75	125			
Lead			63.8	mg/kg-dry	1.0	106	75	125			
Selenium			42.8	mg/kg-dry	1.0	79	75	125			
Silver			28.4	mg/kg-dry	1.0	105	75	125			
Lab ID:	H22100108-001AMSE	7 Sai	mple Matri	x Spike Duplicate			Run: ICPM	S205-H_221007B		10/07/	/22 12:15
Arsenic			54.4	mg/kg-dry	1.0	90	75	125	2.4	20	
Barium			145	mg/kg-dry	1.0	133	75	125	5.9	20	SE

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

 ${\sf A}$ - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

E - Estimated value - result exceeds the instrument upper quantitation limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method:	SW6020							Batch: 63789
Lab ID:	H22100108-001AMSD 7 Sample Matrix	Spike Duplicate			Run: ICPMS	S205-H_221007B		10/07/22 12:15
Cadmium	27.2	mg/kg-dry	1.0	100	75	125	0.5	20
Chromium	64.7	mg/kg-dry	1.3	101	75	125	0.9	20
Lead	65.9	mg/kg-dry	1.0	110	75	125	3.3	20
Selenium	43.1	mg/kg-dry	1.0	80	75	125	0.7	20
Silver	28.5	mg/kg-dry	1.0	105	75	125	0.3	20

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	SW6020							Analyti	cal Run: ICPMS205-H	_221010A
Lab ID:	ICV	7 Initia	al Calibration	on Verificat	ion Standard				10/10/	/22 08:52
Arsenic			0.0640	mg/L	0.0010	107	90	110		
Barium			0.0621	mg/L	0.0010	104	90	110		
Cadmium			0.0319	mg/L	0.0010	106	90	110		
Chromium			0.0620	mg/L	0.0010	103	90	110		
Lead			0.0618	mg/L	0.0010	103	90	110		
Selenium			0.0621	mg/L	0.0010	104	90	110		
Silver			0.0318	mg/L	0.0010	106	90	110		
Lab ID:	ICSA	7 Inte	rference Cl	heck Samp	le A				10/10/	/22 08:59
Arsenic		0.	0000397	mg/L	0.0010					
Barium		(0.000179	mg/L	0.0010					
Cadmium		0.	0000902	mg/L	0.0010					
Chromium			0.00198	mg/L	0.0010					
Lead		-0.	0000990	mg/L	0.0010					
Selenium		(0.000212	mg/L	0.0010					
Silver		0.	0000105	mg/L	0.0010					
Lab ID:	ICSAB	7 Inter	rference Cl	heck Samp	le AB				10/10/	/22 09:04
Arsenic			0.00996	mg/L	0.0010	100	70	130		
Barium		(0.000180	mg/L	0.0010		0	0		
Cadmium			0.0101	mg/L	0.0010	101	70	130		
Chromium			0.0219	mg/L	0.0010	110	70	130		
Lead		-0.	0000964	mg/L	0.0010		0	0		
Selenium			0.00957	mg/L	0.0010	96	70	130		
Silver			0.0200	mg/L	0.0010	100	70	130		
Lab ID:	CCV	7 Con	tinuing Cal	ibration Ve	rification Standa	rd			10/10/	/22 09:11
Arsenic			0.0515	mg/L	0.0010	103	90	110		
Barium			0.0516	mg/L	0.0010	103	90	110		
Cadmium			0.0517	mg/L	0.0010	103	90	110		
Chromium			0.0513	mg/L	0.0010	103	90	110		
Lead			0.0509	mg/L	0.0010	102	90	110		
Selenium			0.0514	mg/L	0.0010	103	90	110		
Silver			0.0207	mg/L	0.0010	103	90	110		
Lab ID:	CCV	7 Con	tinuing Cal	ibration Ve	rification Standa	rd			10/10/	/22 10:02
Arsenic			0.0524	mg/L	0.0010	105	90	110		
Barium			0.0531	mg/L	0.0010	106	90	110		
Cadmium			0.0536	mg/L	0.0010	107	90	110		
Chromium			0.0520	mg/L	0.0010	104	90	110		
Lead			0.0519	mg/L	0.0010	104	90	110		
Selenium			0.0519	mg/L	0.0010	104	90	110		
Silver			0.0216	mg/L	0.0010	108	90	110		
Lab ID:	ICV	7 Initia	al Calibration		ion Standard				10/10/	/22 20:24
Arsenic			0.0614	mg/L	0.0010	102	90	110		
Barium			0.0586	mg/L	0.0010	98	90	110		

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	SW6020							Analytica	I Run: ICPMS205-H	_221010A
Lab ID:	ICV	7 Initial	Calibratio	n Verificatio	n Standard				10/10	/22 20:24
Cadmium			0.0301	mg/L	0.0010	100	90	110		
Chromium			0.0586	mg/L	0.0010	98	90	110		
Lead			0.0590	mg/L	0.0010	98	90	110		
Selenium			0.0614	mg/L	0.0010	102	90	110		
Silver			0.0301	mg/L	0.0010	100	90	110		
Lab ID:	ICSA	7 Interfe	erence Ch	eck Sample	Α				10/10	/22 20:31
Arsenic		0.0	000286	mg/L	0.0010					
Barium		0.	000170	mg/L	0.0010					
Cadmium		0.0	000850	mg/L	0.0010					
Chromium		C	.00185	mg/L	0.0010					
Lead		0.0	000491	mg/L	0.0010					
Selenium		0.	000281	mg/L	0.0010					
Silver		0.0	000126	mg/L	0.0010					
Lab ID:	ICSAB	7 Interfe	erence Ch	eck Sample	AB				10/10	/22 20:36
Arsenic		C	.00978	mg/L	0.0010	98	70	130		
Barium		0.	000181	mg/L	0.0010		0	0		
Cadmium		C	.00970	mg/L	0.0010	97	70	130		
Chromium			0.0210	mg/L	0.0010	105	70	130		
Lead		0.0	000541	mg/L	0.0010		0	0		
Selenium		C	.00939	mg/L	0.0010	94	70	130		
Silver			0.0193	mg/L	0.0010	96	70	130		
Lab ID:	CCV	7 Conti	nuing Cali		ication Standar	·d			10/10	/22 20:43
Arsenic			0.0506	mg/L	0.0010	101	90	110		
Barium			0.0499	mg/L	0.0010	100	90	110		
Cadmium			0.0508	mg/L	0.0010	102	90	110		
Chromium			0.0502	mg/L	0.0010	100	90	110		
Lead			0.0501	mg/L	0.0010	100	90	110		
Selenium			0.0503	mg/L	0.0010	101	90	110		
Silver			0.0204	mg/L	0.0010	102	90	110		
Lab ID:	CCV	7 Conti	nuing Cali	bration Verif	ication Standar	rd			10/10	/22 23:09
Arsenic			0.0508	mg/L	0.0010	101	90	110		
Barium			0.0488	mg/L	0.0010	98	90	110		
Cadmium			0.0510	mg/L	0.0010	102	90	110		
Chromium			0.0514	mg/L	0.0010	103	90	110		
Lead			0.0505	mg/L	0.0010	101	90	110		
Selenium			0.0514	mg/L	0.0010	103	90	110		
Silver			0.0206	mg/L	0.0010	103	90	110		
Method:	SW6020								Bat	ch: 63789
Lab ID:	MB-63789	7 Metho	od Blank				Run: ICPMS	S205-H_221010/	A 10/10	/22 09:19
Arsenic			ND	mg/kg	0.4					
Barium			ND	mg/kg	0.7					

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc **Report Date: 11/01/22** Work Order: H22100108

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bate	ch: 63789
Lab ID:	MB-63789	7 Me	thod Blank				Run: ICPM	S205-H_221010A		10/10/	22 09:19
Cadmium			ND	mg/kg	0.09						
Chromium			ND	mg/kg	3						
Lead			ND	mg/kg	1						
Selenium			ND	mg/kg	0.3						
Silver			ND	mg/kg	2						
Method:	SW6020									Bate	ch: 63802
Lab ID:	MB-63802	7 Me	thod Blank				Run: ICPM	S205-H_221010A		10/10/	22 09:21
Arsenic			ND	mg/kg	0.2						
Barium			ND	mg/kg	0.3						
Cadmium			ND	mg/kg	0.04						
Chromium			ND	mg/kg	1						
Lead			ND	mg/kg	0.5						
Selenium			ND	mg/kg	0.1						
Silver			ND	mg/kg	0.7						
Lab ID:	LCS-63802	7 Lal	boratory Co	ontrol Sample			Run: ICPM	S205-H_221010A		10/10/	22 09:24
Arsenic			163	mg/kg	1.0	83	66.4	104			
Barium			188	mg/kg	1.0	101	71.8	124			
Cadmium			99.3	mg/kg	1.0	100	79.2	121			
Chromium			110	mg/kg	3.0	94	72.5	115			
Lead			104	mg/kg	1.3	99	71.6	128			
Selenium			180	mg/kg	1.0	88	72.3	111			
Silver			44.6	mg/kg	1.8	106	70.8	133			
Lab ID:	LFB-63802	7 Lal	boratory Fo	rtified Blank			Run: ICPM	S205-H_221010A		10/10/	22 09:26
Arsenic			51.4	mg/kg	1.0	103	80	120			
Barium			55.9	mg/kg	1.0	112	80	120			
Cadmium			28.0	mg/kg	1.0	112	80	120			
Chromium			54.6	mg/kg	1.2	109	80	120			
Lead			57.1	mg/kg	1.0	114	80	120			
Selenium			42.3	mg/kg	1.0	85	80	120			
Silver			29.6	mg/kg	1.0	118	80	120			
Lab ID:	H22100165-001ADIL	7 Se	rial Dilution				Run: ICPM	S205-H_221010A		10/10/	22 09:33
Arsenic			ND	mg/kg-dry	180		0	0		10	
Barium			486	mg/kg-dry	310		0	0		10	N
Cadmium			ND	mg/kg-dry	42		0	0		10	
Chromium			ND	mg/kg-dry	1400		0	0		10	
Lead			ND	mg/kg-dry	590		0	0		10	
Selenium			ND	mg/kg-dry	160		0	0		10	
Silver			ND	mg/kg-dry	830		0	0		10	
Lab ID:	H22100165-001APDS	31 7 Po	st Digestio	n/Distillation Spike	9		Run: ICPM	S205-H_221010A		10/10/	22 09:36
Arsenic	_	_	-	mg/kg-dry	36	105	75	125			
Barium				mg/kg-dry	63	104	75	125			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

SW6020							<u> </u>		Bate	ch: 63802
H22100165-001APDS	1 7 Post	Digestion	n/Distillation Spike			Run: ICPMS	S205-H_221010A		10/10/	22 09:36
		1250	mg/kg-dry	8.3	110	75	125			
		1270	mg/kg-dry	280	111	75	125			
		1200	mg/kg-dry	120	105	75	125			
		1180	mg/kg-dry	31	104	75	125			
		517	mg/kg-dry	170	113	75	125			
H22100165-001AMS	7 Samp	ole Matrix	c Spike			Run: ICPMS	S205-H_221010A		10/10/	22 09:38
		2500	mg/kg-dry	36	109	75	125			
		3020	mg/kg-dry	63	111	75	125			
		1280	mg/kg-dry	8.4	112	75	125			
		2530	mg/kg-dry	280	110	75	125			
		2430	mg/kg-dry	120	106	75	125			
		2310	mg/kg-dry	32	101	75	125			
		1300	mg/kg-dry	170	114	75	125			
H22100165-001AMSD	7 Samp	ole Matrix	Spike Duplicate			Run: ICPMS	S205-H_221010A		10/10/	22 09:41
		2490	mg/kg-dry	36	108	75	125	0.3	20	
		2980	mg/kg-dry	63	109	75	125	1.5	20	
		1270	mg/kg-dry	8.4	111	75	125	1.0	20	
		2530	mg/kg-dry	280	110	75	125	0.1	20	
		2450	mg/kg-dry	120	107	75	125	0.7	20	
		2300	mg/kg-dry	32	100	75	125	0.5	20	
		1290	mg/kg-dry	170	112	75	125	1.0	20	
SW6020									Bate	ch: 63807
MB-63807	7 Meth	od Blank				Run: ICPMS	S205-H_221010A		10/10/	22 23:14
		ND	mg/L	0.001						
		ND	mg/L	0.0006						
		ND	mg/L	0.0001						
		ND	mg/L	0.001						
		ND	mg/L	0.0005						
		ND	mg/L	0.0008						
		ND	mg/L	0.0004						
LCS-63807	7 Labo	ratory Co	ontrol Sample			Run: ICPMS	S205-H_221010A		10/10/	22 23:17
		0.491	mg/L	0.0010	98	80	120			
		0.495	mg/L	0.050	99	80	120			
		0.256	mg/L	0.0010	103	80	120			
		0.516	mg/L	0.0050	103	80	120			
		0.514	mg/L	0.0010	103	80	120			
		0.466	mg/L	0.0010	93	80	120			
		0.0494	mg/L	0.0010	99	80	120			
H22100108-008AMS3	7 Sam	ole Matrix	c Spike			Run: ICPMS	S205-H_221010A		10/10/	22 23:31
		0.495	mg/L	0.0010	99	75	125			
		0.494	mg/L	0.050	99	75	125			
	H22100165-001AMSE H22100165-001AMSE SW6020 MB-63807	H22100165-001AMSD 7 Samp SW6020 MB-63807 7 Methor LCS-63807 7 Labor	### 1250 1270 1200 1180 517 ### 122100165-001AMS ### 22100165-001AMSD ### 22100165-001AMSD ### 2490 2980 1270 2530 2450 2300 1290 ### 2490 #	1250 mg/kg-dry 1270 mg/kg-dry 1270 mg/kg-dry 1200 mg/kg-dry 1200 mg/kg-dry 1180 mg/kg-dry 1180 mg/kg-dry 1180 mg/kg-dry 1280 mg/kg-dry 12310 mg/kg-dry 1300 mg/kg-dry 1300 mg/kg-dry 1300 mg/kg-dry 1270 mg/kg-dry 1290 mg/kg-dry 1290 mg/kg-dry 1290 mg/kg-dry 1290 mg/kg-dry 1290 mg/L ND m	1270 mg/kg-dry 120 1200 mg/kg-dry 120 1180 mg/kg-dry 31 517 mg/kg-dry 170 12100165-001AMS 7 Sample Matrix Spike 2500 mg/kg-dry 36 3020 mg/kg-dry 8.4 2530 mg/kg-dry 280 2430 mg/kg-dry 120 2310 mg/kg-dry 32 1300 mg/kg-dry 32 1300 mg/kg-dry 36 2980 mg/kg-dry 32 1270 mg/kg-dry 32 1280 mg/kg-dry 36 1270 mg/kg-dry 36 1270 mg/kg-dry 36 1270 mg/kg-dry 36 1270 mg/kg-dry 30 1280 mg/kg-dry 30 120 mg/kg-d	1250 mg/kg-dry	1250 mg/kg-dry	1250 mg/kg-dry	1250 mg/kg-dry	1250 mg/kg-dry 280 111 75 125 125 126 1270 mg/kg-dry 280 111 75 125 125 126 1270 mg/kg-dry 31 104 75 125

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

	•							•			
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bat	ch: 63807
Lab ID:	H22100108-008AMS	3 7 Sa	mple Matrix	Spike			Run: ICPMS	S205-H_221010A		10/10/	22 23:31
Cadmium			0.256	mg/L	0.0010	102	75	125			
Chromium			0.510	mg/L	0.0050	102	75	125			
Lead			0.512	mg/L	0.0010	102	75	125			
Selenium			0.464	mg/L	0.0010	93	75	125			
Silver			0.0495	mg/L	0.0010	99	75	125			
Lab ID:	H22100108-008AMSI	o 7 Sa	mple Matrix	Spike Dupl	icate		Run: ICPMS	S205-H_221010A	L	10/10/	22 23:33
Arsenic			0.497	mg/L	0.0010	99	75	125	0.3	20	
Barium			0.500	mg/L	0.050	100	75	125	1.2	20	
Cadmium			0.259	mg/L	0.0010	104	75	125	1.2	20	
Chromium			0.518	mg/L	0.0050	104	75	125	1.7	20	
Lead			0.519	mg/L	0.0010	104	75	125	1.3	20	
Selenium			0.462	mg/L	0.0010	92	75	125	0.4	20	
Silver			0.0502	mg/L	0.0010	100	75	125	1.4	20	
Method:	SW6020							Analytical	Run: I	CPMS205-H ₋	_221011A
Lab ID:	ICV	Init	ial Calibration	on Verificati	on Standard					10/11/	22 10:44
Barium			0.0631	mg/L	0.0010	105	90	110			
Lab ID:	ICSA	Inte	erference C	heck Sampl	e A					10/11/	22 10:51
Barium			0.000212	mg/L	0.0010						
Lab ID:	ICSAB	Inte	erference C	heck Sampl	e AB					10/11/	22 10:56
Barium			0.000170	mg/L	0.0010		0	0			
Lab ID:	CCV	Co	ntinuing Cal	libration Ver	rification Standar	d				10/11/	22 11:03
Barium			0.0511	mg/L	0.0010	102	90	110			
Lab ID:	CCV	Co	ntinuing Cal	ibration Ver	rification Standar	d				10/11/	22 11:30
Barium			0.0523	mg/L	0.0010	105	90	110			

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW7470A							Analytica	al Run: I	HGCV203-H	_221006B
Lab ID:	ICV	Initia	al Calibratio	n Verificatio	n Standard					10/06/	/22 15:06
Mercury		C	0.000919	mg/L	0.00010	92	90	110			
Lab ID:	CCV1	Con	tinuing Cal	ibration Veri	fication Standar	d				10/06/	/22 15:08
Mercury			0.00250	mg/L	0.00010	100	90	110			
Lab ID:	CCV	Con	tinuing Cal	ibration Veri	fication Standar	d				10/06/	/22 15:37
Mercury			0.00255	mg/L	0.00010	102	90	110			
Method:	SW7470A									Bat	ch: 63799
Lab ID:	MB-63799	Meth	hod Blank				Run: HGCV	'203-H_221006B	}	10/06/	/22 15:41
Mercury			ND	mg/L	0.00002						
Lab ID:	LCS-63799	Labo	oratory Cor	ntrol Sample			Run: HGCV	203-H_221006B	3	10/06/	/22 15:43
Mercury		C	0.000455	mg/L	0.00010	91	80	120			
Lab ID:	H22100078-001EDIL	- Seri	al Dilution				Run: HGCV	′203-H_221006B	3	10/06/	/22 15:47
Mercury			ND	mg/L	0.00025		0	0		10	
Lab ID:	H22100078-001EMS	Sam	nple Matrix	Spike			Run: HGCV	/203-H_221006B	}	10/06/	/22 15:50
Mercury		C	0.000443	mg/L	0.00010	89	75	125			
Lab ID:	H22100078-001EMS	D Sam	nple Matrix	Spike Duplic	cate		Run: HGCV	203-H_221006B	3	10/06/	/22 15:52
Mercury		C	0.000445	mg/L	0.00010	89	75	125	0.5	20	

www.energylab.com

QA/QC Summary Report

Prepared by Helena, MT Branch

WGM Group Inc Work Order: H22100108 **Report Date: 11/01/22** Client:

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW7471B							Analytica	l Run: I	HGCV203-H_	_221007A
Lab ID:	ICV	Initia	al Calibrat	ion Verification Sta	andard					10/07/	22 11:57
Mercury			0.00097	mg/kg	0.50	97	90	110			
Lab ID:	CCV	Con	tinuing Ca	alibration Verification	on Standaı	rd				10/07/	22 11:59
Mercury			0.0025	mg/kg	0.50	101	90	110			
Method:	SW7471B									Bato	ch: 63801
Lab ID:	MB-63801	Meth	nod Blank				Run: HGCV	'203-H_221007A		10/07/	22 12:04
Mercury			ND	mg/kg	0.004						
Lab ID:	LCS-63801	Labo	oratory Co	ontrol Sample			Run: HGCV	′203-H_221007A		10/07/	22 12:06
Mercury			5.3	mg/kg	0.50	106	71	126.4			
Lab ID:	LFB-63801	Labo	oratory Fo	ortified Blank			Run: HGCV	′203-H_221007A		10/07/	22 12:08
Mercury			0.20	mg/kg	0.50	104	80	120			
Lab ID:	H22100108-001AMS	Sam	ple Matrix	x Spike			Run: HGCV	′203-H_221007A		10/07/	22 12:14
Mercury			0.23	mg/kg-dry	0.50	100	80	120			
Lab ID:	H22100108-001AMS	D Sam	ple Matrix	x Spike Duplicate			Run: HGCV	′203-H_221007A		10/07/	22 12:16
Mercury			0.23	mg/kg-dry	0.050	100	80	120	0.3	20	
Lab ID:	H22100165-001BMS	Sam	ple Matrix	x Spike			Run: HGCV	′203-H_221007A		10/07/	22 12:35
Mercury			0.20	mg/kg	0.50	98	80	120			
Lab ID:	H22100165-001BMS	D Sam	ple Matrix	x Spike Duplicate			Run: HGCV	/203-H_221007A		10/07/	22 12:37
Mercury			0.20	mg/kg	0.050	98	80	120	2.5	20	

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Cour	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW8015M									Bat	ch: 63711
Lab ID:	MB-63711	2	Method Blank				Run: HHP2	_221003A		10/03	/22 18:01
Total Extra	actable Hydrocarbons		ND	ug/L	300						
Surr: o-	Terphenyl					65	40	140			
Lab ID:	LCS-63711	2	Laboratory Cor	ntrol Sample			Run: HHP2	_221003A		10/03	/22 18:47
Total Extra	actable Hydrocarbons		6090	ug/L	310	93	60	140			
Surr: o-	Terphenyl					83	40	140			
Lab ID:	H22090920-001AMS	2	Sample Matrix	Spike			Run: HHP2	_221004A		10/04	/22 17:14
Total Extra	actable Hydrocarbons		14400	ug/L	600	113	60	140			
Surr: o-	Terphenyl					97	40	140			
Lab ID:	H22090920-001AMSE	2	Sample Matrix	Spike Duplicate			Run: HHP2	_221004A		10/04	/22 18:00
Total Extra	actable Hydrocarbons		15400	ug/L	640	113	60	140	6.6	20	
Surr: o-	Terphenyl					103	40	140			
Method:	SW8015M									Bat	ch: 63743
Lab ID:	MB-63743	2	Method Blank				Run: HHP2	_221005A		10/05	/22 17:12
Total Extra	actable Hydrocarbons		ND	mg/kg	20						
Surr: o-	Terphenyl				0.17	98	40	140			
Lab ID:	LCS-63743	2	Laboratory Cor	ntrol Sample			Run: HHP2	_221005A		10/05	/22 17:58
Total Extra	actable Hydrocarbons		192.4	mg/kg	20	98	60	140			
Surr: o-	Terphenyl				0.17	88	40	140			
Lab ID:	H22100037-002AMS	2	Sample Matrix	Spike			Run: HHP2	_221005A		10/05	/22 20:18
	actable Hydrocarbons		492.5	mg/kg-dry	20	85	60	140			
Surr: o-	Terphenyl				0.22	71	40	140			
Lab ID:	H22100037-002AMSI	2	Sample Matrix	Spike Duplicate			Run: HHP2	_221005A		10/05	/22 21:05
	actable Hydrocarbons		519.4	mg/kg-dry	20	95	60	140	5.3	20	
Surr: o-	Terphenyl				0.22	76	40	140			

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

					0.0011					
Qual	RPD RPDLimit	High Limit RP	ow Limit	%REC	RL	Units	Result	Count		alyte
R17892	Analytical Run:								V8015M	thod: SV
22 15:40	10/05/			d	erification Standar	libration Ve	ntinuing Cal	15 Co	V_1005GC401r-W	ID: CC
		125	75	105		ug/L	210			lonane
		125	75	108		ug/L	216			ecane
		125	75	101		ug/L	202			odecane
		125	75	108		ug/L	216			etradecane
		125	75	92		ug/L	183			lexadecane
		125	75	98		ug/L	196			Octadecane
		125	75	99		ug/L	199			lonadecane
		125	75	100		ug/L	200			icosane
		125	75	99		ug/L	198			ocosane
		125	75	98		ug/L	197			etracosane
		125	75	99		ug/L	197			lexacosane
		125	75	99		ug/L	199			Octacosane
		125	75	95		ug/L	189			riacontane
		125	75	97		ug/L	195		ane	lexatriaconta
		125	75	96					nenyl	Surr: o-Terph
R17896	Analytical Run:								V8015M	thod: SV
22 15:32	10/06/			d	erification Standar	libration Ve	ntinuing Cal	15 Co	V_1006GC401r-S	ID: CC
		125	75	106		mg/kg	7.088			lonane
		125	75	108		mg/kg	7.180			ecane
		125	75	101		mg/kg	6.746			odecane
		125	75	106		mg/kg	7.095			etradecane
		125	75	92		mg/kg	6.147			lexadecane
		125	75	98		mg/kg	6.563			Octadecane
		125	75	100		mg/kg	6.655			lonadecane
		125	75	100		mg/kg	6.687			icosane
		125	75	99		mg/kg	6.587			ocosane
		125	75	99		mg/kg	6.569			etracosane
				99		mg/kg	6.592			
		125	75			1119/119				lexacosane
		125 125	75 75	99		mg/kg	6.625			lexacosane Octacosane
							6.625 6.372			
		125	75	99		mg/kg			ane	Octacosane

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								Bat	ch: 63691
Lab ID: MB-63691	53 Me	thod Blank			Run: 5973M	ISD_220930C		09/30/	/22 19:12
Benzene		ND	mg/kg	0.20					
Bromobenzene		ND	mg/kg	0.20					
Bromochloromethane		ND	mg/kg	0.20					
Bromodichloromethane		ND	mg/kg	0.20					
Bromoform		ND	mg/kg	0.20					
Bromomethane		ND	mg/kg	0.20					
Carbon tetrachloride		ND	mg/kg	0.20					
Chlorobenzene		ND	mg/kg	0.20					
Chlorodibromomethane		ND	mg/kg	0.20					
Chloroethane		ND	mg/kg	0.20					
2-Chloroethyl vinyl ether		ND	mg/kg	0.20					
Chloroform		ND	mg/kg	0.20					
Chloromethane		ND	mg/kg	0.20					
2-Chlorotoluene		ND	mg/kg	0.20					
4-Chlorotoluene		ND	mg/kg	0.20					
1,2-Dibromoethane		ND	mg/kg	0.20					
Dibromomethane		ND	mg/kg	0.20					
1,2-Dichlorobenzene		ND	mg/kg	0.20					
1,3-Dichlorobenzene		ND	mg/kg	0.20					
1,4-Dichlorobenzene		ND	mg/kg	0.20					
Dichlorodifluoromethane		ND	mg/kg	0.20					
1,1-Dichloroethane		ND	mg/kg	0.20					
1,2-Dichloroethane		ND	mg/kg	0.20					
1,1-Dichloroethene		ND	mg/kg	0.20					
cis-1,2-Dichloroethene		ND	mg/kg	0.20					
trans-1,2-Dichloroethene		ND	mg/kg	0.20					
1,2-Dichloropropane		ND	mg/kg	0.20					
1,3-Dichloropropane		ND	mg/kg	0.20					
2,2-Dichloropropane		ND	mg/kg	0.20					
1,1-Dichloropropene		ND	mg/kg	0.20					
cis-1,3-Dichloropropene		ND	mg/kg	0.20					
trans-1,3-Dichloropropene		ND	mg/kg	0.20					
Ethylbenzene		ND	mg/kg	0.20					
Methyl tert-butyl ether (MTBE)		ND	mg/kg	0.20					
Methyl ethyl ketone		ND	mg/kg	4.0					
Methylene chloride		ND	mg/kg	0.20					
Styrene		ND	mg/kg	0.20					
1,1,1,2-Tetrachloroethane		ND	mg/kg	0.20					
1,1,2,2-Tetrachloroethane		ND	mg/kg	0.20					
Tetrachloroethene		ND	mg/kg	0.20					
Toluene		ND	mg/kg	0.20					
1,1,1-Trichloroethane		ND	mg/kg	0.20					
1,1,2-Trichloroethane		ND	mg/kg	0.20					
Trichloroethene		ND	mg/kg	0.20					
Trichlorofluoromethane		ND	mg/kg	0.20					

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

SW8260B MB-63691	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
MB-63691									Bat	ch: 6369
	53 Met	thod Blank				Run: 5973N	ISD_220930C		09/30	/22 19:12
oropropane		ND	mg/kg	0.20						
le		ND	mg/kg	0.20						
es .		ND	mg/kg	0.20						
		ND	mg/kg	0.20						
Dichloroethane-d4				0.20	151	65	147			S
romofluoromethane				0.20	141	71	135			S
romofluorobenzene				0.20	147	60	143			S
uene-d8				0.20	123	76	133			
LCS-63691	Lab	oratory Co	ntrol Sample			Run: 5973N	MSD_220930C		09/30	/22 19:44
le		1.01	mg/kg	0.20	101	81	139			
H22090748-002AMS	53 Sar	mple Matrix	Spike			Run: 5973N	/SD_220930C		09/30	/22 20:47
		1.23	mg/kg-dry	0.20	97	77	128			
ene		1.19	mg/kg-dry	0.20	94	81	131			
omethane		1.24	mg/kg-dry	0.20	97	71	135			
oromethane		1.16	mg/kg-dry	0.20	91	62	141			
		1.13	mg/kg-dry	0.20	89	75	117			
ane		1.22	mg/kg-dry	0.20	96	40	121			
achloride				0.20	81	71	142			
ene				0.20	88	82	130			
momethane				0.20	90	66	123			
ne				0.20	91	53	140			
yl vinyl ether				0.20	100	39	155			
				0.20	99	69	134			
ane				0.20	107	78	131			
iene				0.20	84	84	131			
iene				0.20	91	82	133			
oethane				0.20	99	63	121			
thane		1.19	mg/kg-dry	0.20	94	53	149			
benzene		1.23	mg/kg-dry	0.20	96	84	121			
benzene		1.14	mg/kg-dry	0.20	90	82	125			
benzene		1.17	mg/kg-dry	0.20	92	83	128			
uoromethane		1.02	mg/kg-dry	0.20	80	38	132			
ethane				0.20	83	66	124			
ethane				0.20			131			
ethene				0.20			136			
loroethene				0.20	90		126			
chloroethene				0.20	84	80	130			
propane				0.20	84		148			
				0.20			125			
propane				0.20		74	138			
propene				0.20	90		154			
				0.20			152			
THE ECO SEENING SHIPPING THE PROPERTY OF THE P	comofluorobenzene tene-d8 LCS-63691 e H22090748-002AMS ene comethane comethane condethane delene	comofluorobenzene dene-d8 LCS-63691 e H22090748-002AMS 53 Sarr ene comethane comethane dene momethane ene ene ene ene ene ene ene ene ene	LCS-63691 Laboratory Corporation	LCS-63691 Laboratory Control Sample 1.01 mg/kg H22090748-002AMS Sample Matrix Spike 1.23 mg/kg-dry methane 1.24 mg/kg-dry momethane 1.24 mg/kg-dry mane 1.22 mg/kg-dry momethane 1.22 mg/kg-dry momethane 1.24 mg/kg-dry momethane 1.25 mg/kg-dry momethane 1.16 mg/kg-dry momethane 1.17 mg/kg-dry mane 1.18 mg/kg-dry momethane 1.19 mg/kg-dry momethane 1.10 mg/kg-dry momethane 1.11 mg/kg-dry momethane 1.12 mg/kg-dry momethane 1.14 mg/kg-dry momethane 1.15 mg/kg-dry momethane 1.16 mg/kg-dry mg/kg-dry mane 1.25 mg/kg-dry mg/kg-dry methane 1.16 mg/kg-dry mg/kg-dry	Commonstration Comm	Composition Composition	Commofituorobenzene Commofituorobenzene	Commofluorobenzene	Composition Composition	Commonstration Comm

Qualifiers:

RL - Analyte Reporting Limit

S - Spike recovery outside of advisory limits

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								Bat	ch: 63691
Lab ID: H22090748-002AMS	53 Sample Matri	x Spike			Run: 5973N	MSD_220930C		09/30/	/22 20:47
Ethylbenzene	1.09	mg/kg-dry	0.20	86	79	134			
Methyl tert-butyl ether (MTBE)	1.45	mg/kg-dry	0.20	114	60	126			
Methyl ethyl ketone	13.2	mg/kg-dry	4.0	104	50	150			
Methylene chloride	1.11	mg/kg-dry	0.20	87	80	127			
Styrene	1.19	mg/kg-dry	0.20	94	82	127			
1,1,1,2-Tetrachloroethane	1.08	mg/kg-dry	0.20	85	75	128			
1,1,2,2-Tetrachloroethane	1.35	mg/kg-dry	0.20	106	74	120			
Tetrachloroethene	0.999	mg/kg-dry	0.20	79	72	144			
Toluene	1.08	mg/kg-dry	0.20	85	70	146			
1,1,1-Trichloroethane	1.10	mg/kg-dry	0.20	86	75	145			
1,1,2-Trichloroethane	1.30	mg/kg-dry	0.20	102	67	125			
Trichloroethene	1.05	mg/kg-dry	0.20	83	70	144			
Trichlorofluoromethane	1.34	mg/kg-dry	0.20	105	79	140			
1,2,3-Trichloropropane	1.36	mg/kg-dry	0.20	107	76	117			
Vinyl chloride	1.16	mg/kg-dry	0.20	91	81	139			
m+p-Xylenes	2.18	mg/kg-dry	0.20	86	79	133			
o-Xylene	1.09	mg/kg-dry	0.20	86	84	132			
Surr: 1,2-Dichloroethane-d4		0 0 ,	0.20	122	65	147			
Surr: Dibromofluoromethane			0.20	110	71	135			
Surr: p-Bromofluorobenzene			0.20	114	60	143			
Surr: Toluene-d8			0.20	99	76	133			
Lab ID: H22090748-002AMS	D 53 Sample Matri	x Spike Duplica	ate		Run: 5973N	MSD_220930C		09/30/	/22 21:19
Benzene	1.27	mg/kg-dry	0.20	100	77	128	3.1	20	
Bromobenzene	1.26	mg/kg-dry	0.20	99	81	131	5.6	20	
Bromochloromethane	1.28	mg/kg-dry	0.20	101	71	135	3.7	20	
Bromodichloromethane	1.18	mg/kg-dry	0.20	93	62	141	1.6	20	
Bromoform	1.23	mg/kg-dry	0.20	97	75	117	8.7	20	
Bromomethane	1.32	mg/kg-dry	0.20	104	40	121	7.9	20	
Carbon tetrachloride	1.06	mg/kg-dry	0.20	84	71	142	2.9	20	
Chlorobenzene	1.17	mg/kg-dry	0.20	92	82	130	4.5	20	
Chlorodibromomethane	1.16	mg/kg-dry	0.20	91	66	123	1.3	20	
Chloroethane	1.08	mg/kg-dry	0.20	85	53	140	6.5	20	
2-Chloroethyl vinyl ether	1.35	mg/kg-dry	0.20	106	39	155	6.2	20	
Chloroform	1.29	mg/kg-dry	0.20	101	69	134	2.5	20	
Chloromethane	1.29	mg/kg-dry	0.20	101	78	131	4.9	20	
2-Chlorotoluene	1.10	mg/kg-dry	0.20	86	84	131	3.1	20	
4-Chlorotoluene	1.18	mg/kg-dry	0.20	92	82	133	1.3	20	
1,2-Dibromoethane	1.26	mg/kg-dry	0.20	99	63	121	0.3	20	
Dibromomethane	1.23	mg/kg-dry	0.20	96	53	149	2.6	20	
1,2-Dichlorobenzene	1.27	mg/kg-dry	0.20	100	84	121	3.2	20	
1,3-Dichlorobenzene	1.19	mg/kg-dry	0.20	94	82	125	4.3	20	
1,4-Dichlorobenzene	1.20	mg/kg-dry	0.20	95	83	128	2.7	20	
Dichlorodifluoromethane	0.973	mg/kg-dry	0.20	77	38	132	4.8	20	
1,1-Dichloroethane	1.06		0.20	83	66	124	0.6	20	
		ر بھ جن بھ	5.20			· - ·	J.J		

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Bat	tch: 6369
Lab ID: H22090748-002AMS	D 53 San	nple Matri	Spike Duplicate			Run: 5973N	/ISD_220930C		09/30	/22 21:19
1,2-Dichloroethane		1.25	mg/kg-dry	0.20	99	65	131	3.6	20	
1,1-Dichloroethene		1.12	mg/kg-dry	0.20	88	82	136	2.7	20	
cis-1,2-Dichloroethene		1.24	mg/kg-dry	0.20	97	82	126	8.0	20	
trans-1,2-Dichloroethene		1.12	mg/kg-dry	0.20	88	80	130	4.7	20	
1,2-Dichloropropane		1.08	mg/kg-dry	0.20	85	70	148	1.3	20	
1,3-Dichloropropane		1.36	mg/kg-dry	0.20	107	73	125	1.0	20	
2,2-Dichloropropane		1.18	mg/kg-dry	0.20	92	74	138	1.1	20	
1,1-Dichloropropene		1.18	mg/kg-dry	0.20	93	63	154	3.1	20	
cis-1,3-Dichloropropene		1.35	mg/kg-dry	0.20	106	66	152	5.0	20	
trans-1,3-Dichloropropene		1.24	mg/kg-dry	0.20	98	64	133	1.5	20	
Ethylbenzene		1.11	mg/kg-dry	0.20	88	79	134	2.2	20	
Methyl tert-butyl ether (MTBE)		1.54	mg/kg-dry	0.20	121	60	126	6.1	20	
Methyl ethyl ketone		13.8	mg/kg-dry	4.0	108	50	150	4.5	20	
Methylene chloride		1.13	mg/kg-dry	0.20	89	80	127	1.7	20	
Styrene		1.24	mg/kg-dry	0.20	97	82	127	4.0	20	
1,1,1,2-Tetrachloroethane		1.14	mg/kg-dry	0.20	90	75	128	5.3	20	
1,1,2,2-Tetrachloroethane		1.38	mg/kg-dry	0.20	108	74	120	1.9	20	
Tetrachloroethene		1.04	mg/kg-dry	0.20	82	72	144	4.3	20	
Toluene		1.11	mg/kg-dry	0.20	87	70	146	2.9	20	
1,1,1-Trichloroethane		1.11	mg/kg-dry	0.20	88	75	145	1.7	20	
1,1,2-Trichloroethane		1.32	mg/kg-dry	0.20	104	67	125	1.7	20	
Trichloroethene		1.08	mg/kg-dry	0.20	85	70	144	2.9	20	
Trichlorofluoromethane		1.29	mg/kg-dry	0.20	102	79	140	3.6	20	
1,2,3-Trichloropropane		1.35	mg/kg-dry	0.20	106	76	117	0.4	20	
Vinyl chloride		1.08	mg/kg-dry	0.20	85	81	139	6.5	20	
m+p-Xylenes		2.27	mg/kg-dry	0.20	89	79	133	4.4	20	
o-Xylene		1.15	mg/kg-dry	0.20	90	84	132	5.5	20	
Surr: 1,2-Dichloroethane-d4				0.20	124	65	147			
Surr: Dibromofluoromethane				0.20	111	71	135			
Surr: p-Bromofluorobenzene				0.20	112	60	143			
Surr: Toluene-d8				0.20	99	76	133			
Lab ID: LCS-63691	52 Lab	oratory Co	ontrol Sample			Run: 5973N	/ISD_221003A		10/03	/22 13:53
Benzene		1.00	mg/kg	0.20	100	77	128			
Bromobenzene		0.959	mg/kg	0.20	96	81	131			
Bromochloromethane		0.999	mg/kg	0.20	100	71	135			
Bromodichloromethane		0.922	mg/kg	0.20	92	62	141			
Bromoform		0.909	mg/kg	0.20	91	75	117			
Bromomethane		1.19	mg/kg	0.20	119	40	121			
Carbon tetrachloride		0.856	mg/kg	0.20	86	71	142			
Chlorobenzene		0.892	mg/kg	0.20	89	82	130			
Chlorodibromomethane		0.899	mg/kg	0.20	90	66	123			
Chloroethane		0.853	mg/kg	0.20	85	53	140			
2-Chloroethyl vinyl ether		0.986	mg/kg	0.20	99	39	155			
Chloroform		1.00	mg/kg	0.20	100		134			

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW8260B									Bat	ch: 63691
Lab ID:	LCS-63691	52 Lat	ooratory Co	ntrol Sample			Run: 5973N	/ISD_221003A		10/03	/22 13:53
Chloromet	thane		0.914	mg/kg	0.20	91	78	131			
2-Chloroto	oluene		0.850	mg/kg	0.20	85	84	131			
4-Chloroto	oluene		0.943	mg/kg	0.20	94	82	133			
1,2-Dibron	noethane		0.992	mg/kg	0.20	99	63	121			
Dibromom	ethane		0.913	mg/kg	0.20	91	53	149			
1,2-Dichlo	robenzene		0.982	mg/kg	0.20	98	84	121			
1,3-Dichlo	robenzene		0.925	mg/kg	0.20	93	82	125			
1,4-Dichlo	robenzene		0.933	mg/kg	0.20	93	83	128			
Dichlorodit	fluoromethane		0.571	mg/kg	0.20	57	38	132			
1,1-Dichlo	roethane		0.856	mg/kg	0.20	86	66	124			
1,2-Dichlo	roethane		0.941	mg/kg	0.20	94	65	131			
1,1-Dichlo	roethene		0.869	mg/kg	0.20	87	82	136			
cis-1,2-Dic	chloroethene		0.970	mg/kg	0.20	97	82	126			
trans-1,2-[Dichloroethene		0.886	mg/kg	0.20	89	80	130			
1,2-Dichlo	ropropane		0.851	mg/kg	0.20	85	70	148			
1,3-Dichlo	ropropane		1.04	mg/kg	0.20	104	73	125			
2,2-Dichlo	ropropane		1.02	mg/kg	0.20	102	74	138			
1,1-Dichlo	ropropene		0.952	mg/kg	0.20	95	63	154			
cis-1,3-Dic	chloropropene		1.02	mg/kg	0.20	102	66	152			
trans-1,3-[Dichloropropene		0.960	mg/kg	0.20	96	64	133			
Ethylbenze	ene		0.874	mg/kg	0.20	87	79	134			
Methyl tert	t-butyl ether (MTBE)		1.18	mg/kg	0.20	118	60	126			
Methyl eth	yl ketone		9.58	mg/kg	4.0	96	50	150			
Methylene	chloride		0.838	mg/kg	0.20	84	80	127			
Styrene			0.951	mg/kg	0.20	95	82	127			
1,1,1,2-Te	trachloroethane		0.895	mg/kg	0.20	90	75	128			
1,1,2,2-Te	trachloroethane		1.01	mg/kg	0.20	101	74	120			
Tetrachlor	oethene		0.787	mg/kg	0.20	79	72	144			
Toluene			0.850	mg/kg	0.20	85	70	146			
1,1,1-Trich	nloroethane		0.904	mg/kg	0.20	90	75	145			
1,1,2-Trich	nloroethane		1.02	mg/kg	0.20	102	67	125			
Trichloroet	thene		0.817	mg/kg	0.20	82	70	144			
Trichloroflu	uoromethane		0.990	mg/kg	0.20	99	79	140			
1,2,3-Trich	nloropropane		1.10	mg/kg	0.20	110	76	117			
m+p-Xyler			1.79	mg/kg	0.20	89	79	133			
o-Xylene			0.907	mg/kg	0.20	91	84	132			
-	2-Dichloroethane-d4			-	0.20	98	65	147			
Surr: Di	bromofluoromethane				0.20	90	71	135			
Surr: p-	Bromofluorobenzene				0.20	91	60	143			
Surr: To	oluene-d8				0.20	81	76	133			

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: SW8260B								Analytical Run: I	R178933
Lab ID: 04-Oct-22_CCV_4	53 Co	ntinuing Cal	ibration Ve	rification Standar	·d			10/05/2	22 11:36
Benzene		4.87	ug/L	0.50	97	70	130		
Bromobenzene		4.59	ug/L	0.50	92	70	130		
Bromochloromethane		5.46	ug/L	0.50	109	70	130		
Bromodichloromethane		4.97	ug/L	0.50	99	70	130		
Bromoform		5.47	ug/L	0.50	109	70	130		
Bromomethane		6.46	ug/L	0.50	129	70	130		
Carbon tetrachloride		4.26	ug/L	0.50	85	70	130		
Chlorobenzene		4.36	ug/L	0.50	87	70	130		
Chlorodibromomethane		4.89	ug/L	0.50	98	70	130		
Chloroethane		4.80	ug/L	0.50	96	70	130		
Chloroform		5.11	ug/L	0.50	102	80	120		
Chloromethane		6.16	ug/L	0.50	123	70	130		
2-Chlorotoluene		4.19	ug/L	0.50	84	70	130		
4-Chlorotoluene		4.62	ug/L	0.50	92	70	130		
1,2-Dibromoethane		5.34	ug/L	0.30	107	70	130		
Dibromomethane		5.05	ug/L	0.50	101	70	130		
1,2-Dichlorobenzene		5.13	ug/L	0.50	103	70	130		
1,3-Dichlorobenzene		4.66	ug/L	0.50	93	70	130		
1,4-Dichlorobenzene		4.68	ug/L	0.50	94	70	130		
Dichlorodifluoromethane		5.13	ug/L	0.50	103	70	130		
1,1-Dichloroethane		4.50	ug/L	0.50	90	70	130		
1,2-Dichloroethane		5.40	ug/L	0.50	108	70	130		
1,1-Dichloroethene		4.39	ug/L	0.50	88	80	120		
cis-1,2-Dichloroethene		4.92	ug/L	0.50	98	70	130		
trans-1,2-Dichloroethene		4.32	ug/L	0.50	86	70	130		
1,2-Dichloropropane		4.53	ug/L	0.50	91	80	120		
1,3-Dichloropropane		5.51	ug/L	0.50	110	70	130		
2,2-Dichloropropane		4.71	ug/L	0.50	94	70	130		
1,1-Dichloropropene		4.48	ug/L	0.50	90	70	130		
cis-1,3-Dichloropropene		5.12	ug/L	0.50	102	70	130		
trans-1,3-Dichloropropene		5.38	ug/L	0.30	108	70	130		
Ethylbenzene		4.14	ug/L	0.50	83	80	120		
Methyl tert-butyl ether (MTBE)		6.31	ug/L	0.50	126	70	130		
Methyl ethyl ketone		64.9	ug/L	10	130	70	130		
Methylene chloride		4.86	ug/L	0.50	97	70	130		
Styrene		4.66	ug/L	0.50	93	70	130		
1,1,1,2-Tetrachloroethane		4.49	ug/L	0.50	90	70	130		
1,1,2,2-Tetrachloroethane		6.02	ug/L	0.50	120	70	130		
Tetrachloroethene		3.89	ug/L	0.50	78	70	130		
Toluene		4.10	ug/L	0.50	82	80	120		
1,1,1-Trichloroethane		4.37	ug/L	0.50	87	70	130		
1,1,2-Trichloroethane		5.28	ug/L	0.50	106	70	130		
Trichloroethene		3.98	ug/L	0.50	80	70	130		
Trichlorofluoromethane		5.30	ug/L	0.50	106	70	130		
1,2,3-Trichloropropane		6.37	ug/L ug/L	0.50	127	70	130		
r - F - F									

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								Ana	alytical Run:	: R178933
Lab ID: 04-Oct-22_CCV_4	53 Cor	ntinuing Cal	libration Veri	fication Standar	·d				10/05	/22 11:36
Vinyl chloride		4.68	ug/L	0.40	94	80	120			
m+p-Xylenes		8.30	ug/L	0.50	83	70	130			
o-Xylene		4.31	ug/L	0.50	86	70	130			
Xylenes, Total		12.6	ug/L	0.50	84	70	130			
Surr: 1,2-Dichloroethane-d4				1.0	115	69	131			
Surr: Dibromofluoromethane				1.0	104	70	125			
Surr: p-Bromofluorobenzene				1.0	105	76	123			
Surr: Toluene-d8				1.0	86	80	119			
Method: SW8260B									Batch:	: R178933
Lab ID: 04-Oct-22_LCS_5	53 Lab	oratory Co	ntrol Sample			Run: 5973N	/ISD_221005A		10/05	/22 12:15
Benzene		5.42	ug/L	0.50	108	75	120			
Bromobenzene		5.46	ug/L	0.50	109	80	125			
Bromochloromethane		5.52	ug/L	0.50	110	65	130			
Bromodichloromethane		5.20	ug/L	0.50	104	79	118			
Bromoform		5.75	ug/L	0.50	115	67	128			
Bromomethane		7.23	ug/L	0.50	145	51	136			S
Carbon tetrachloride		4.72	ug/L	0.50	94	75	129			
Chlorobenzene		4.91	ug/L	0.50	98	77	127			
Chlorodibromomethane		5.16	ug/L	0.50	103	70	126			
Chloroethane		4.81	ug/L	0.50	96	70	139			
Chloroform		5.29	ug/L	0.50	106	74	125			
Chloromethane		5.95	ug/L	0.50	119	64	152			
2-Chlorotoluene		4.99	ug/L	0.50	100	78	130			
4-Chlorotoluene		5.36	ug/L	0.50	107	82	129			
1,2-Dibromoethane		5.54	ug/L	0.30	111	72	122			
Dibromomethane		5.26	ug/L	0.50	105	75	120			
1,2-Dichlorobenzene		5.43	ug/L	0.50	109	74	122			
1,3-Dichlorobenzene		5.15	ug/L	0.50	103	78	120			
1,4-Dichlorobenzene		5.39	ug/L	0.50	108	70	121			
Dichlorodifluoromethane		4.84	ug/L	0.50	97	48	152			
1,1-Dichloroethane		4.97	ug/L	0.50	99	77	123			
1,2-Dichloroethane		5.21	ug/L	0.50	104	64	127			
1,1-Dichloroethene		4.91	ug/L	0.50	98	76	130			
cis-1,2-Dichloroethene		5.29	ug/L	0.50	106	74	124			
trans-1,2-Dichloroethene		4.84	ug/L	0.50	97	79	124			
1,2-Dichloropropane		5.04	ug/L	0.50	101	81	121			
1,3-Dichloropropane		5.76	ug/L	0.50	115	72	122			
2,2-Dichloropropane		5.45	ug/L	0.50	109	75	139			
1,1-Dichloropropene		5.14	ug/L	0.50	103	73	130			
cis-1,3-Dichloropropene		5.80	ug/L	0.50	116	74	128			
trans-1,3-Dichloropropene		5.41	ug/L	0.30	108	69	122			
Ethylbenzene		4.75	ug/L	0.50	95	74	125			
Methyl tert-butyl ether (MTBE)		6.15	ug/L	0.50	123	66	129			
Methyl ethyl ketone		56.6	ug/L	10	113	63	136			

Qualifiers:

RL - Analyte Reporting Limit

S - Spike recovery outside of advisory limits

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch:	R178933
Lab ID: 04-Oct-22_LCS_5	53 Lab	oratory Co	ntrol Sample			Run: 5973N	/ISD_221005A		10/05	/22 12:15
Methylene chloride		5.11	ug/L	0.50	102	69	128			
Styrene		5.20	ug/L	0.50	104	75	123			
1,1,1,2-Tetrachloroethane		4.85	ug/L	0.50	97	76	124			
1,1,2,2-Tetrachloroethane		6.18	ug/L	0.50	124	67	124			
Tetrachloroethene		4.31	ug/L	0.50	86	77	136			
Toluene		4.73	ug/L	0.50	95	82	125			
1,1,1-Trichloroethane		4.99	ug/L	0.50	100	73	134			
1,1,2-Trichloroethane		5.70	ug/L	0.50	114	72	119			
Trichloroethene		4.63	ug/L	0.50	93	72	132			
Trichlorofluoromethane		5.09	ug/L	0.50	102	73	137			
1,2,3-Trichloropropane		5.64	ug/L	0.50	113	71	126			
Vinyl chloride		4.51	ug/L	0.40	90	68	140			
m+p-Xylenes		9.60	ug/L	0.50	96	84	128			
o-Xylene		4.89	ug/L	0.50	98	79	126			
Xylenes, Total		14.5	ug/L	0.50	97	81	127			
Surr: 1,2-Dichloroethane-d4				1.0	104	69	131			
Surr: Dibromofluoromethane				1.0	97	70	125			
Surr: p-Bromofluorobenzene				1.0	106	76	123			
Surr: Toluene-d8				1.0	88	80	119			
Lab ID: 05-Oct-22_MBLK_7	53 Me	thod Blank				Run: 5973N	/ISD_221005A		10/05	/22 13:23
Benzene		ND	ug/L	0.50						
Bromobenzene		ND	ug/L	0.50						
Bromochloromethane		ND	ug/L	0.50						
Bromodichloromethane		ND	ug/L	0.50						
Bromoform		ND	ug/L	0.50						
Bromomethane		ND	ug/L	0.50						
Carbon tetrachloride		ND	ug/L	0.50						
Chlorobenzene		ND	ug/L	0.50						
Chlorodibromomethane		ND	ug/L	0.50						
Chloroethane		ND	ug/L	0.50						
Chloroform		ND	ug/L	0.50						
Chloromethane		ND	ug/L	0.50						
2-Chlorotoluene		ND	ug/L	0.50						
4-Chlorotoluene		ND	ug/L	0.50						
1,2-Dibromoethane		ND	ug/L	0.30						
Dibromomethane		ND	ug/L	0.50						
1,2-Dichlorobenzene		ND	ug/L	0.50						
1,3-Dichlorobenzene		ND	ug/L	0.50						
1,4-Dichlorobenzene		ND	ug/L	0.50						
Dichlorodifluoromethane		ND	ug/L	0.50						
1,1-Dichloroethane		ND	ug/L	0.50						
1,2-Dichloroethane		ND	ug/L	0.50						
1,1-Dichloroethene		ND	ug/L	0.50						
cis-1,2-Dichloroethene		ND	ug/L	0.50						
O III										

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch:	R178933
Lab ID: 05-Oct-22_MBLK_7	53 Met	hod Blank				Run: 5973N	ISD_221005A		10/05/	/22 13:23
trans-1,2-Dichloroethene		ND	ug/L	0.50						
1,2-Dichloropropane		ND	ug/L	0.50						
1,3-Dichloropropane		ND	ug/L	0.50						
2,2-Dichloropropane		ND	ug/L	0.50						
1,1-Dichloropropene		ND	ug/L	0.50						
cis-1,3-Dichloropropene		ND	ug/L	0.50						
trans-1,3-Dichloropropene		ND	ug/L	0.30						
Ethylbenzene		ND	ug/L	0.50						
Methyl tert-butyl ether (MTBE)		ND	ug/L	0.50						
Methyl ethyl ketone		ND	ug/L	10						
Methylene chloride		ND	ug/L	0.50						
Styrene		ND	ug/L	0.50						
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50						
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50						
Tetrachloroethene		ND	ug/L	0.50						
Toluene		ND	ug/L	0.50						
1,1,1-Trichloroethane		ND	ug/L	0.50						
1,1,2-Trichloroethane		ND	ug/L	0.50						
Trichloroethene		ND	ug/L	0.50						
Trichlorofluoromethane		ND	ug/L	0.50						
1,2,3-Trichloropropane		ND	ug/L	0.50						
Vinyl chloride		ND	ug/L	0.40						
m+p-Xylenes		ND	ug/L ug/L	0.40						
o-Xylene		ND	ug/L ug/L	0.50						
Xylenes, Total		ND	ug/L ug/L	0.50						
Surr: 1,2-Dichloroethane-d4		ND	ug/L	1.0	107	69	131			
Surr: Dibromofluoromethane				1.0	99	70	125			
				1.0	107	76	123			
Surr: p-Bromofluorobenzene Surr: Toluene-d8										
Surr. Toluene-do				1.0	87	80	119			
Lab ID: H22100108-008DMS	53 Sam	nple Matrix	Spike			Run: 5973N	/ISD_221005A		10/05/	/22 14:30
Benzene		5.73	ug/L	0.50	115	75	120			
Bromobenzene		5.69	ug/L	0.50	114	80	125			
Bromochloromethane		6.10	ug/L	0.50	122	65	130			
Bromodichloromethane		5.76	ug/L	0.50	115	79	118			
Bromoform		6.26	ug/L	0.50	125	67	128			
Bromomethane		6.79	ug/L	0.50	136	51	136			
Carbon tetrachloride		5.16	ug/L	0.50	103	75	129			
Chlorobenzene		5.32	ug/L	0.50	106	77	127			
Chlorodibromomethane		5.49	ug/L	0.50	110	70	126			
Chloroethane		4.34	ug/L	0.50	87	70	139			
Chloroform		6.20	ug/L	0.50	117	74	125			
Chloromethane		5.35	ug/L	0.50	107	64	152			
		5.18	ug/L	0.50	104		130			
2-Chlorotoluene										

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch:	R178933
Lab ID: H22100108-008DMS	53 Sar	mple Matrix	Spike			Run: 5973N	ISD_221005A		10/05/	22 14:30
1,2-Dibromoethane		6.03	ug/L	0.30	121	72	122			
Dibromomethane		5.91	ug/L	0.50	118	75	120			
1,2-Dichlorobenzene		5.82	ug/L	0.50	116	74	122			
1,3-Dichlorobenzene		5.63	ug/L	0.50	113	78	120			
1,4-Dichlorobenzene		5.59	ug/L	0.50	112	70	121			
Dichlorodifluoromethane		4.54	ug/L	0.50	91	48	152			
1,1-Dichloroethane		5.28	ug/L	0.50	106	77	123			
1,2-Dichloroethane		5.82	ug/L	0.50	116	64	127			
1,1-Dichloroethene		5.35	ug/L	0.50	107	76	130			
cis-1,2-Dichloroethene		5.71	ug/L	0.50	114	74	124			
trans-1,2-Dichloroethene		5.23	ug/L	0.50	105	79	124			
1,2-Dichloropropane		5.40	ug/L	0.50	108	81	121			
1,3-Dichloropropane		5.95	ug/L	0.50	119	72	122			
2,2-Dichloropropane		5.65	ug/L	0.50	113	75	139			
1,1-Dichloropropene		5.52	ug/L	0.50	110	73	130			
cis-1,3-Dichloropropene		5.90	ug/L	0.50	118	74	128			
trans-1,3-Dichloropropene		6.26	ug/L	0.30	125	69	122			S
Ethylbenzene		5.11	ug/L	0.50	102	74	125			
Methyl tert-butyl ether (MTBE)		6.72	ug/L	0.50	134	66	129			S
Methyl ethyl ketone		55.7	ug/L	10	111	63	136			
Methylene chloride		5.54	ug/L	0.50	111	69	128			
Styrene		5.58	ug/L	0.50	112	75	123			
1,1,1,2-Tetrachloroethane		5.38	ug/L	0.50	108	76	124			
1,1,2,2-Tetrachloroethane		6.42	ug/L	0.50	128	67	124			S
Tetrachloroethene		4.70	ug/L	0.50	94	77	136			
Toluene		5.10	ug/L	0.50	102	82	125			
1,1,1-Trichloroethane		5.32	ug/L	0.50	106	73	134			
1,1,2-Trichloroethane		6.02	ug/L	0.50	120	72	119			S
Trichloroethene		4.90	ug/L	0.50	98	72	132			
Trichlorofluoromethane		4.76	ug/L	0.50	95	73	137			
1,2,3-Trichloropropane		6.45	ug/L	0.50	129	71	126			S
Vinyl chloride		4.12	ug/L	0.40	82	68	140			
m+p-Xylenes		10.2	ug/L	0.50	102	84	128			
o-Xylene		5.21	ug/L	0.50	104	79	126			
Xylenes, Total		15.4	ug/L	0.50	103	81	127			
Surr: 1,2-Dichloroethane-d4			J	1.0	105	69	131			
Surr: Dibromofluoromethane				1.0	101	70	125			
Surr: p-Bromofluorobenzene				1.0	104	76	123			
Surr: Toluene-d8				1.0	88	80	119			
Lab ID: H22100108-008DMSI	D 53 Sar	mple Matrix	Spike Duplicate			Run: 5973M	ISD_221005A		10/05/	/22 15:02
Benzene		5.55	ug/L	0.50	111	75	120	3.4	20	
Bromobenzene		5.24	ug/L	0.50	105	80	125	8.2	20	
Bromochloromethane		5.54	ug/L	0.50	111	65	130	9.6	20	
Bromodichloromethane		5.57	ug/L	0.50	111	79	118	3.3	20	

Qualifiers:

RL - Analyte Reporting Limit

S - Spike recovery outside of advisory limits

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch:	R178933
Lab ID: H22100108-008DMS	D 53 Sa	mple Matrix	Spike Duplica	ate		Run: 5973N	/ISD_221005A		10/05/	/22 15:02
Bromoform		5.66	ug/L	0.50	113	67	128	10	20	
Bromomethane		7.18	ug/L	0.50	144	51	136	5.6	20	S
Carbon tetrachloride		4.67	ug/L	0.50	93	75	129	9.9	20	
Chlorobenzene		4.72	ug/L	0.50	94	77	127	12	20	
Chlorodibromomethane		5.24	ug/L	0.50	105	70	126	4.7	20	
Chloroethane		4.60	ug/L	0.50	92	70	139	5.9	20	
Chloroform		5.99	ug/L	0.50	112	74	125	3.4	20	
Chloromethane		6.11	ug/L	0.50	122	64	152	13	20	
2-Chlorotoluene		4.73	ug/L	0.50	95	78	130	9.1	20	
4-Chlorotoluene		5.62	ug/L	0.50	112	82	129	1.3	20	
1,2-Dibromoethane		5.59	ug/L	0.30	112	72	122	7.6	20	
Dibromomethane		5.67	ug/L	0.50	113	75	120	4.1	20	
1,2-Dichlorobenzene		5.35	ug/L	0.50	107	74	122	8.3	20	
1,3-Dichlorobenzene		5.25	ug/L	0.50	105	78	120	6.9	20	
1,4-Dichlorobenzene		5.16	ug/L	0.50	103	70	121	8.0	20	
Dichlorodifluoromethane		4.68	ug/L	0.50	94	48	152	3.0	20	
1,1-Dichloroethane		5.37	ug/L	0.50	107	77	123	1.7	20	
1,2-Dichloroethane		6.02	ug/L	0.50	120	64	127	3.3	20	
1,1-Dichloroethene		5.04	ug/L	0.50	101	76	130	6.0	20	
cis-1,2-Dichloroethene		5.41	ug/L	0.50	108	74	124	5.5	20	
trans-1,2-Dichloroethene		4.94	ug/L	0.50	99	79	124	5.7	20	
1,2-Dichloropropane		5.19	ug/L	0.50	104	81	121	3.9	20	
1,3-Dichloropropane		5.52	ug/L	0.50	110	72	122	7.4	20	
2,2-Dichloropropane		5.58	ug/L	0.50	112	75	139	1.3	20	
1,1-Dichloropropene		5.29	ug/L	0.50	106	73	130	4.3	20	
cis-1,3-Dichloropropene		5.69	ug/L	0.50	114	74	128	3.6	20	
trans-1,3-Dichloropropene		5.88	ug/L	0.30	118	69	122	6.2	20	
Ethylbenzene		4.65	ug/L	0.50	93	74	125	9.5	20	
Methyl tert-butyl ether (MTBE)		6.43	ug/L	0.50	129	66	129	4.4	20	
Methyl ethyl ketone		62.7	ug/L	10	125	63	136	12	20	
Methylene chloride		5.99	ug/L	0.50	120	69	128	7.8	20	
Styrene		5.07	ug/L	0.50	101	75	123	9.7	20	
1,1,1,2-Tetrachloroethane		4.74	ug/L	0.50	95	76	124	13	20	
1,1,2,2-Tetrachloroethane		6.52	ug/L	0.50	130	67	124	1.5	20	S
Tetrachloroethene		4.10	ug/L	0.50	82	77	136	14	20	· ·
Toluene		4.60	ug/L	0.50	92	82	125	10	20	
1,1,1-Trichloroethane		5.03	ug/L	0.50	101	73	134	5.7	20	
1,1,2-Trichloroethane		5.85	ug/L ug/L	0.50	117	73 72	119	2.8	20	
Trichloroethene		4.67	ug/L ug/L	0.50	93	72	132	4.8	20	
Trichlorofluoromethane		4.86	ug/L ug/L	0.50	97	73	137	1.9	20	
1,2,3-Trichloropropane		6.23	ug/L ug/L	0.50	125	73 71	126	3.5	20	
Vinyl chloride		4.50	ug/L ug/L	0.40	90	68	140	8.7	20	
m+p-Xylenes		9.19	ug/L ug/L	0.40	92	84	128	11	20	
o-Xylene		4.67	ug/L ug/L	0.50	93	79	126	11	20	
Xylenes, Total		13.9		0.50	92	79 81	127	11	20	
Ayielles, Total		13.9	ug/L	0.50	92	01	121	11	20	

Qualifiers:

RL - Analyte Reporting Limit

S - Spike recovery outside of advisory limits

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count	Result	Units	RL	%REC Lo	ow Limit I	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch:	R178933
Lab ID: H22100108-008DMS	D 53 Sar	mple Matrix	Spike Duplicate		Ri	un: 5973MS	SD_221005A		10/05/	/22 15:02
Surr: 1,2-Dichloroethane-d4				1.0	115	69	131			
Surr: Dibromofluoromethane				1.0	102	70	125			
Surr: p-Bromofluorobenzene				1.0	111	76	123			
Surr: Toluene-d8				1.0	85	80	119			

Prepared by Helena, MT Branch

Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

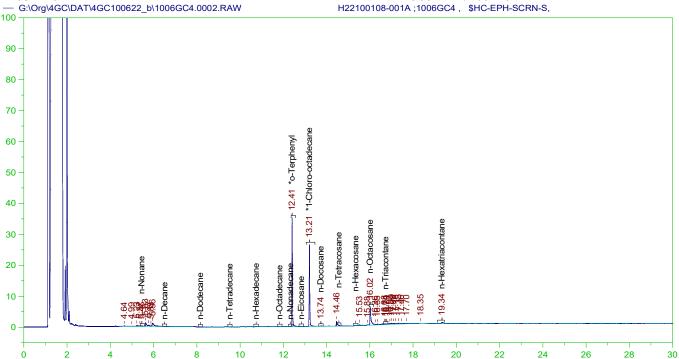
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								An	alytical Run:	R179093
Lab ID: 11-Oct-22_CCV_24	52 Co	ntinuing Cal	libration √	erification Standa	rd				10/12/	/22 12:11
Benzene		1.13	mg/kg	0.20	113	70	130			
Bromobenzene		1.08	mg/kg	0.20	108	70	130			
Bromochloromethane		1.12	mg/kg	0.20	112	70	130			
Bromodichloromethane		1.12	mg/kg	0.20	112	70	130			
Bromoform		1.10	mg/kg	0.20	110	70	130			
Bromomethane		1.03	mg/kg	0.20	103	70	130			
Carbon tetrachloride		1.12	mg/kg	0.20	112	70	130			
Chlorobenzene		1.11	mg/kg	0.20	111	70	130			
Chlorodibromomethane		1.12	mg/kg	0.20	112	70	130			
Chloroethane		0.951	mg/kg	0.20	95	70	130			
Chloroform		1.10	mg/kg	0.20	110	80	120			
Chloromethane		0.837	mg/kg	0.20	84	70	130			
2-Chlorotoluene		1.08	mg/kg	0.20	108	70	130			
4-Chlorotoluene		1.09	mg/kg	0.20	109	70	130			
1,2-Dibromoethane		1.11	mg/kg	0.20	111	70	130			
Dibromomethane		1.13	mg/kg	0.20	113	70	130			
1,2-Dichlorobenzene		1.12	mg/kg	0.20	112	70	130			
1,3-Dichlorobenzene		1.10	mg/kg	0.20	110	70	130			
1,4-Dichlorobenzene		1.10	mg/kg	0.20	110	70	130			
Dichlorodifluoromethane		0.970	mg/kg	0.20	97	70	130			
1,1-Dichloroethane		1.12	mg/kg	0.20	112	70	130			
1,2-Dichloroethane		1.09	mg/kg	0.20	109	70	130			
1,1-Dichloroethene		1.09	mg/kg	0.20	109	80	120			
cis-1,2-Dichloroethene		1.10	mg/kg	0.20	110	70	130			
trans-1,2-Dichloroethene		1.11	mg/kg	0.20	111	70	130			
1,2-Dichloropropane		1.14	mg/kg	0.20	114	80	120			
1,3-Dichloropropane		1.14	mg/kg	0.20	114	70	130			
2,2-Dichloropropane		1.13	mg/kg	0.20	113	70	130			
1,1-Dichloropropene		1.11	mg/kg	0.20	111	70	130			
cis-1,3-Dichloropropene		1.07	mg/kg	0.20	107	70	130			
trans-1,3-Dichloropropene		1.05	mg/kg	0.20	105	70	130			
Ethylbenzene		1.10	mg/kg	0.20	110	80	120			
Methyl tert-butyl ether (MTBE)		1.11	mg/kg	0.20	111	70	130			
Methyl ethyl ketone		13.7	mg/kg	4.0	137	70	130			S
Methylene chloride		1.05	mg/kg	0.20	105	70	130			
Styrene		1.10	mg/kg	0.20	110	70	130			
1,1,1,2-Tetrachloroethane		1.13	mg/kg	0.20	113	70	130			
1,1,2,2-Tetrachloroethane		1.15	mg/kg	0.20	115	70	130			
Tetrachloroethene		1.09	mg/kg	0.20	109	70	130			
Toluene		1.12	mg/kg	0.20	112	80	120			
1,1,1-Trichloroethane		1.10	mg/kg	0.20	110	70	130			
1,1,2-Trichloroethane		1.14	mg/kg	0.20	114	70	130			
Trichloroethene		1.11	mg/kg	0.20	111	70	130			
Trichlorofluoromethane		0.925	mg/kg	0.20	92	70	130			
1,2,3-Trichloropropane		1.13	mg/kg	0.20	113	70	130			
			J J							

Qualifiers:

RL - Analyte Reporting Limit

S - Spike recovery outside of advisory limits

Prepared by Helena, MT Branch


Client: WGM Group Inc Work Order: H22100108 Report Date: 11/01/22

Analyte	Count Res	ult Uni	s RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B							Ar	nalytical Run:	R179093
Lab ID: 11-Oct-22_CCV_24	52 Continuing	g Calibratio	n Verification Standa	ırd				10/12/	/22 12:11
Vinyl chloride	0.9)25 mg/l	g 0.20	93	80	120			
m+p-Xylenes	2	.20 mg/l	g 0.20	110	70	130			
o-Xylene	1.	.10 mg/l	g 0.20	110	70	130			
Surr: 1,2-Dichloroethane-d4			0.20	103	70	130			
Surr: Dibromofluoromethane			0.20	104	70	130			
Surr: p-Bromofluorobenzene			0.20	103	70	130			
Surr: Toluene-d8			0.20	104	70	130			
Method: SW8260B							Ar	nalytical Run:	R179128
Lab ID: 12-Oct-22_CCV_21	Continuing	g Calibratio	n Verification Standa	ırd				10/12/	22 16:53
2-Chloroethyl vinyl ether	0.8	330 mg/l	g 0.20	83	70	130			

Batch ID: 63743 H22100108-001A;1006GC4, \$HC-EPH-SCRN-S,

EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

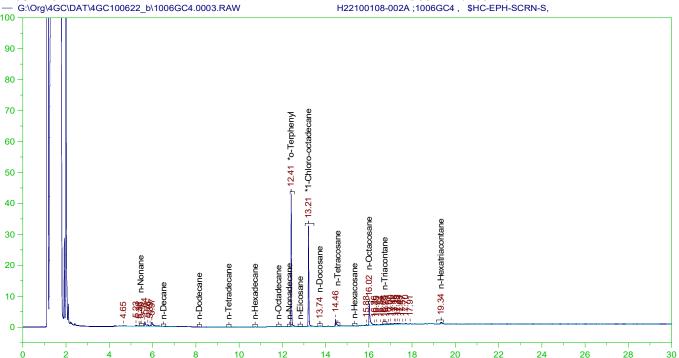
Sample Name: H22100108-001A ;1006GC4 , \$HC-EPH-SCRN-S, Raw File: G:\Org\4GC\DAT\4GC100622 b\1006GC4.0002.RAW

Date & Time Acquired: 10/6/2022 4:37:16 PM Method File: G:\Org\4GC\Methods\SR011022S.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL

Sample Weight: 30.77 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031

Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44


SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.405	69628	6.5	4.739	72.9	-
*1-Chloro-octadecane	13.208	53744	6.5	4.427	68.11	-

DRO Area:43099.28 DRO Amount: 3.64508 TEH Area:85789.55 TEH Amount: 7.255569 C9-C18 Area:22539.8 C9-C18 Amount: 1.93515 C19-C36 Area:-12763.94 C19-C36 Amount:-1.063631

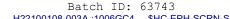
EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

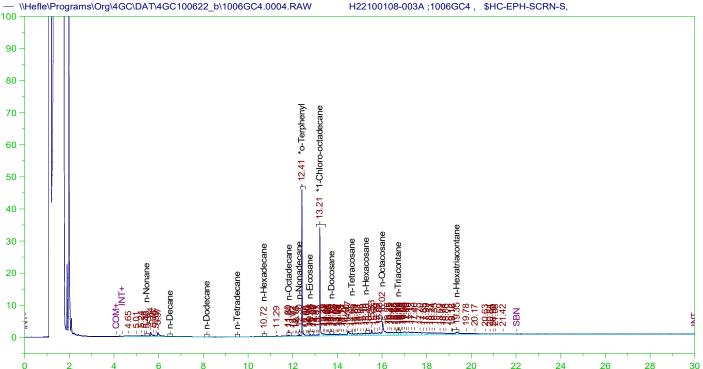
Sample Name: H22100108-002A ;1006GC4 , \$HC-EPH-SCRN-S, Raw File: G:\Org\4GC\DAT\4GC100622 b\1006GC4.0003.RAW

Date & Time Acquired: 10/6/2022 5:23:28 PM Method File: G:\Org\4GC\Methods\SR011022S.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL

Sample Weight: 30.66 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031


Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44


SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.409	85387	6.523	5.832	89.4	_
*1-Chloro-octadecane	13.211	65687	6.523	5.43	83.25	-

DRO Area:49027.73 DRO Amount: 4.16135 TEH Amount: 7.869856 TEH Area: 92720.21 C9-C18 Area:22779.91 C9-C18 Amount: 1.962781 C19-C36 Amount:-1.757289 C19-C36 Area:-21012.69

220512-SB2-1

EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

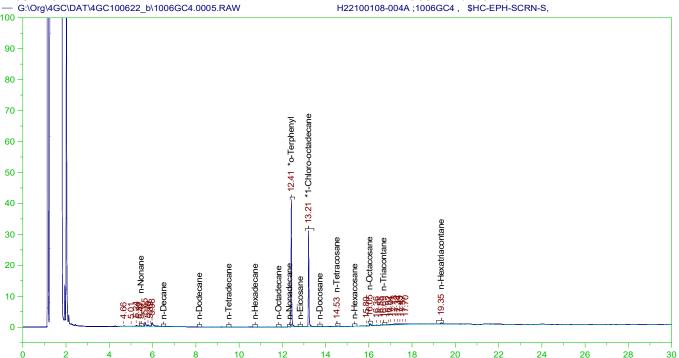
Sample Name: H22100108-003A ;1006GC4 , \$HC-EPH-SCRN-S,

Raw File: \\Hefle\Programs\Org\4GC\DAT\4GC100622 b\1006GC4.0004.RAW

Date & Time Acquired: 10/6/2022 6:09:44 PM Method File: G:\Org\4GC\Methods\100622_04.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL

Sample Weight: 30.7 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031


Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44

SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.41	91601	6.515	6.248	95.91	-
*1-Chloro-octadecane	13.212	73002	6.515	6.027	92.52	-

DRO Area:171518.9 DRO Amount: 14.53912
TEH Area:311515.9 TEH Amount: 26.40623
C9-C18 Area:31374.25 C9-C18 Amount: 2.699772
C19-C36 Area:256161.7 C19-C36 Amount: 21.39486

EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

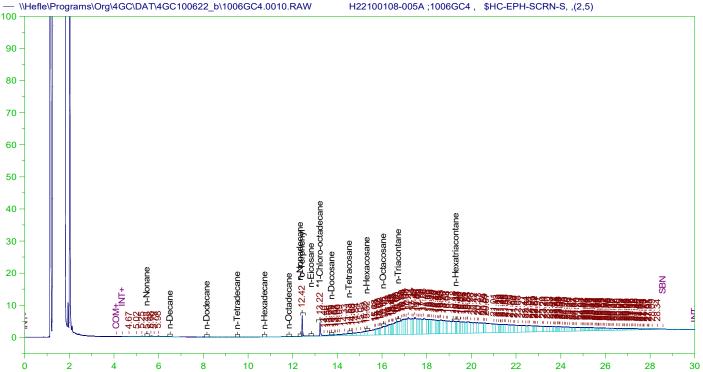
Sample Name: H22100108-004A ;1006GC4 , \$HC-EPH-SCRN-S, Raw File: G:\Org\4GC\DAT\4GC100622 b\1006GC4.0005.RAW

Date & Time Acquired: 10/6/2022 6:56:05 PM Method File: G:\Org\4GC\Methods\SR011022S.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL

Sample Weight: 30.26 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031

Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44


SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.413	84514	6.609	5.849	88.49	-
*1-Chloro-octadecane	13.214	65594	6.609	5.494	83.13	_

DRO Area:13514.93 DRO Amount: 1.162276 TEH Area:54992.88 TEH Amount: 4.729357 C9-C18 Area:23737.46 C9-C18 Amount: 2.072322 C19-C36 Area:26630.09 C19-C36 Amount: 2.25651

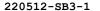
220512-SB3-1

Batch ID: 63743

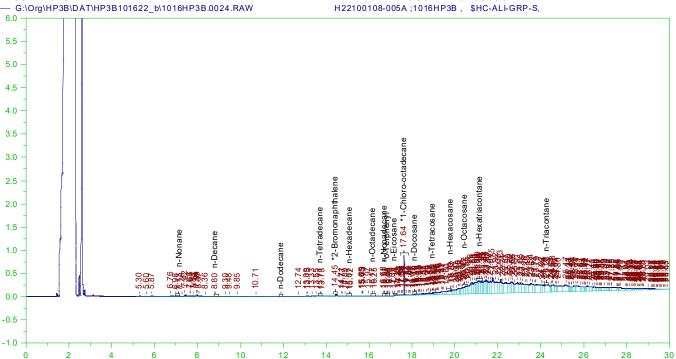
EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

Sample Name: H22100108-005A; 1006GC4, SHC-EPH-SCRN-S, (2,5) Raw File: $\Hefle\Programs\Org\4GC\DAT\4GC100622$ b\1006GC4.0010.RAW

Date & Time Acquired: 10/6/2022 10:48:01 PM Method File: G:\Org\4GC\Methods\100622_08.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL


Sample Weight: 30.19 Dilution: 10 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031


Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44

SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.422	14973	6.625	5.193	78.39	-
*1-Chloro-octadecane	13.221	12255	6.625	5.145	77.66	-

DRO Area:285826.3 DRO Amount: 123.1895
TEH Area:1824386 TEH Amount: 786.2996
C9-C18 Area:7094.333 C9-C18 Amount: 3.10392
C19-C36 Area:990883.3 C19-C36 Amount: 420.7877

EPH ALIPHATICS (FID) ANALYSIS REPORT

Sample Name: H22100108-005A ;1016HP3B , \$HC-ALI-GRP-S, Raw File: G:\Org\HP3B\DAT\HP3B101622 b\1016HP3B.0024.RAW

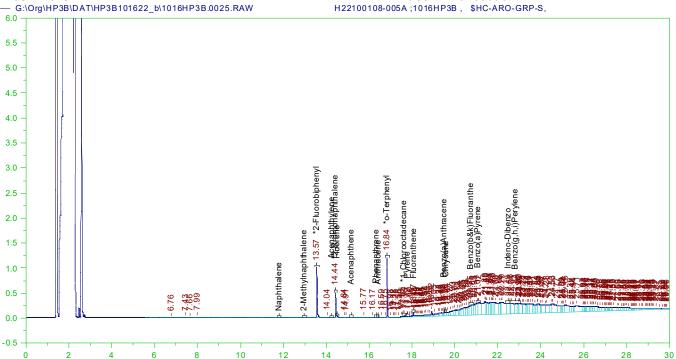
Date & Time Acquired: 10/17/2022 7:04:55 PM Method File: G:\Org\HP3B\Methods\10162224.met Calibration File: G:\Org\HP3B\CALS\ALB030722P.CAL

Sample Weight: 30.19 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Aliphatic Hydrocarbons: 23436.61 Mean RF for C19 to C36 Aliphatic Hydrocarbons: 24113.98 Mean RF for Total Extractable Hydrocarbons: 23823.68 Rt range for Diesel Range Organics: 8.77 to 20.57

Rt range for C9 to C18 Aliphatic Hydrocarbons: 6.97 Rt range for C19 to C36 Aliphatic Hydrocarbons: 16.67 to

SURROGATE COMPOUND ACTUAL. MEASURED %REC RТ AREA *1-Chloro-octadecane 17.642 1510792 6.625 4.505 68.


DRO Area: 9794586 DRO Amount: 27.23605 TEH Area:8.014107E+07 TEH Amount: 222.8503

Aliphatic Hydrocarbon Areas and Amounts:

C9-C18 Area:729907.3 C9-C18 Amount: 2.063193 C19-C36 Area: 5.710939E+07C19-C36 Amount: 156.8937

EPH AROMATICS RANGE VALUES (FID) ANALYSIS REPORT

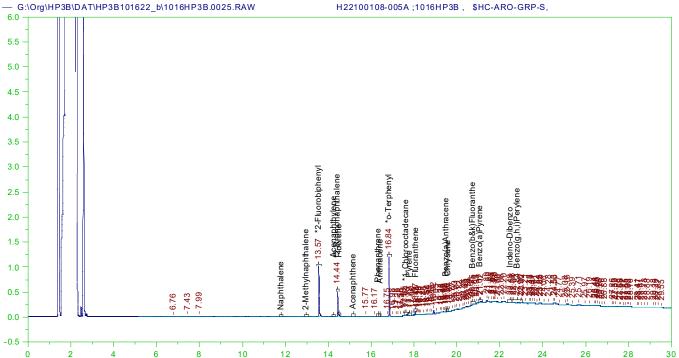
Sample Name: H22100108-005A ;1016HP3B , \$HC-ARO-GRP-S, Raw File: G:\Org\HP3B\DAT\HP3B101622 b\1016HP3B.0025.RAW

Date & Time Acquired: 10/17/2022 7:47:59 PM Method File: G:\Org\HP3B\Methods\10162225.met Calibration File: G:\Org\HP3B\CALS\ARB020322U.CAL

Sample Weight: 30.19 Dilution: 2 S.A.: 1

Mean RF EPH Aromatics: 22944.14

Rt range for EPH C11 to C22 Aromatics: 11.71 to 23.08


SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*2-Fluorobiphenyl	13.565	1992118	6.625	5.302	80.04	_
*2-Bromonaphthalene	14.439	1147012	6.625	4.716	71.19	-
*o-Terphenyl	16.841	2039511	6.625	4.508	68.05	_
*1-Chlorooctadecane	17.642	81864	6.625	.242	3.65	_

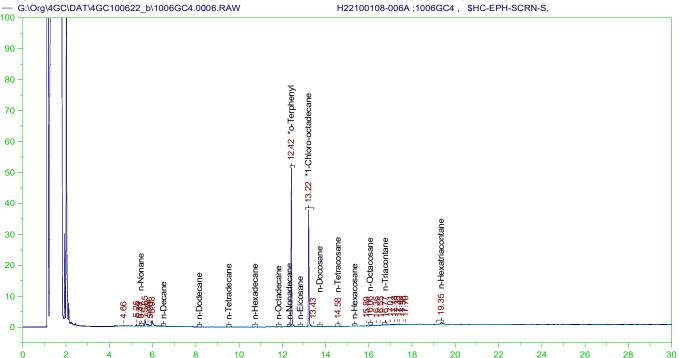
C11-C22 Aromatics Area:4.249446E+07 C11-C22 Aromatics Amount: 122.6951 EPH Aromatics total Area:7.83698E+07 EPH Aromatics Total Amount: 226.2787

EPH AROMATICS TARGET VALUES (FID) ANALYSIS REPORT

Sample Name: H22100108-005A ;1016HP3B , \$HC-ARO-GRP-S,
Raw File: G:\Org\HP3B\DAT\HP3B101622_b\1016HP3B.0025.RAW

Date & Time Acquired: 10/17/2022 7:47:59 PM

Method File: G:\Org\HP3B\Methods\ARBQC020322U.met Calibration File: G:\Org\HP3B\CALS\ARB020322U.CAL


Sample Weight: 30.19 Dilution: 2 S.A.: 1

TARGET ANALYTES	RT	CAL RRT	RRT	AREA	AMOUNT	FLAG
Naphthalene		•			.066	U
2-Methylnaphthalene		•	•		.066	U
Acenaphthylene	 .	•	•		.066	U
Fluorene	 .	•	•		.066	U
Acenaphthene	<u> </u>	•			.066	U
Phenanthrene	<u> </u>	•			.066	U
Anthracene		•			.066	U
Pyrene	17.795	17.795	17.795	10755	.066	U
Fluoranthene	18.066	-3.63	-3.627	141547	.399	
Benzo(a) Anthracene	19.499	19.499	19.499	3834	.066	U
Chrysene	19.561	-5.13	-5.122	20532	.057	J
Benzo(b&k)Fluoranthe	20.755	-6.34	-6.316	30470	.087	J
Benzo(a) Pyrene	21.07	21.07	21.07	11586	.066	U
Indeno-Dibenzo	22.481	-8.03	-8.042	66717	.194	
Benzo(g,h,i)Perylene	22.841	-8.39	-8.402	42068	.123	
SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	QC LIMITS
*2-Fluorobiphenyl	13.565	1973350	6.625	5.253	79.29	40-140
*2-Bromonaphthalene	14.439	1129753	6.625	4.645	70.11	40-140
*o-Terphenyl	16.841	2033326	6.625	4.494	67.84	40-140
*1-Chlorooctadecane	17.642	49996	6.625	.148	2.23	40-140

EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

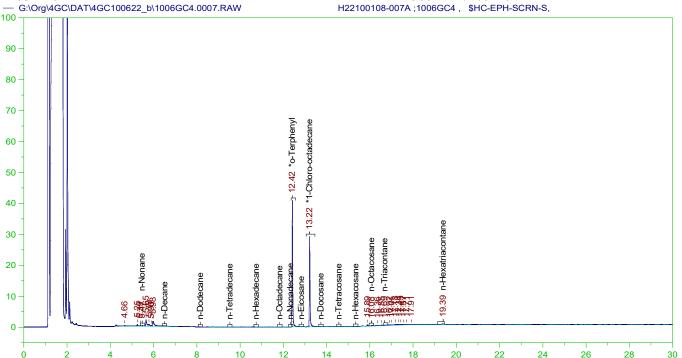
Sample Name: H22100108-006A; 1006GC4, \$HC-EPH-SCRN-S, Raw File: G:\Org\4GC\DAT\4GC100622 b\1006GC4.0006.RAW

Date & Time Acquired: 10/6/2022 7:42:23 PM Method File: G:\Org\4GC\Methods\SR011022S.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL

Sample Weight: 30.46 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031

Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44


SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.415	104237	6.566	7.166	109.14	-
*1-Chloro-octadecane	13.217	80024	6.566	6.659	101.42	-

DRO Area:13506.51 DRO Amount: 1.153925 TEH Area: 61956.61 TEH Amount: 5.293249 C9-C18 Area:33686.97 C9-C18 Amount: 2.921623 C19-C36 Amount: 1.974027 C19-C36 Area:23450.35

220512-SB4-2

Batch ID: 63743 H22100108-007A;1006GC4, \$HC-EPH-SCRN-S,

EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

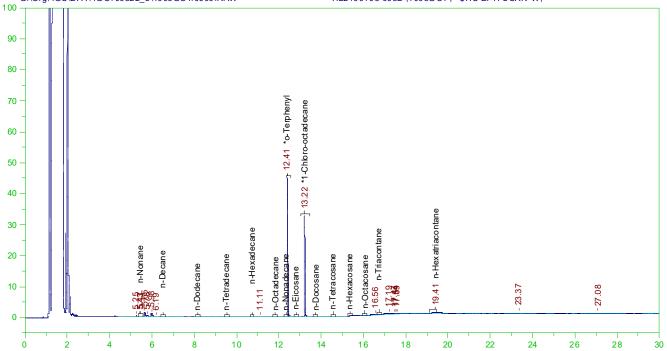
Sample Name: H22100108-007A ;1006GC4 , \$HC-EPH-SCRN-S, Raw File: G:\Org\4GC\DAT\4GC100622 b\1006GC4.0007.RAW

Date & Time Acquired: 10/6/2022 8:28:59 PM Method File: G:\Org\4GC\Methods\SR011022S.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL

Sample Weight: 30.32 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031

Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44


SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.415	86003	6.596	5.94	90.05	_
*1-Chloro-octadecane	13.217	65792	6.596	5.5	83.38	-

DRO Area:9230.68 DRO Amount: 0.7922624 TEH Area:52342.4 TEH Amount: 4.492509 C9-C18 Area:30108.65 C9-C18 Amount: 2.623337 C19-C36 Area:18039.04 C19-C36 Amount: 1.52552

Batch ID: 63711 H22100108-008B;1005GC4, \$HC-EPH-SCRN-W,

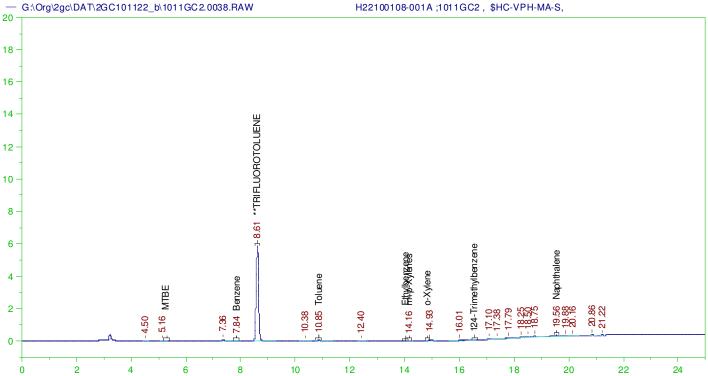
EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) SCREENING ANALYSIS CHROMATOGRAM

Sample Name: H22100108-008B; 1005GC4, \$HC-EPH-SCRN-W, Raw File: G:\Org\4GC\DAT\4GC100522_b\1005GC4.0009.RAW

Date & Time Acquired: 10/5/2022 9: $\overline{5}1:36$ PM Method File: G:\Org\4GC\Methods\SR011022S.MET Calibration File: G:\Org\4GC\Cals\SR011022S.CAL

Sample Weight: 0.9322 Dilution: 2 S.A.: 1

Mean RF for C9 to C18 Hydrocarbons: 757.0734 Mean RF for C19 to C36 Hydrocarbons: 780.0031


Mean RF for Total Extractable Hydrocarbons: 768.5382 Rt range for Diesel Range Organics: 6.41 to 16.84 Rt range for C9 to C18 Hydrocarbons: 5.38 to 12.36 Rt range for C19 to C36 Hydrocarbons: 12.41 to 19.44

SURROGATE COMPOUND	RT	AREA	ACTUAL	MEASURED	%REC	
*o-Terphenyl	12.415	84533	214.546	189.895	88.51	-
*1-Chloro-octadecane	13.217	65454	214.546	177.967	82.95	-

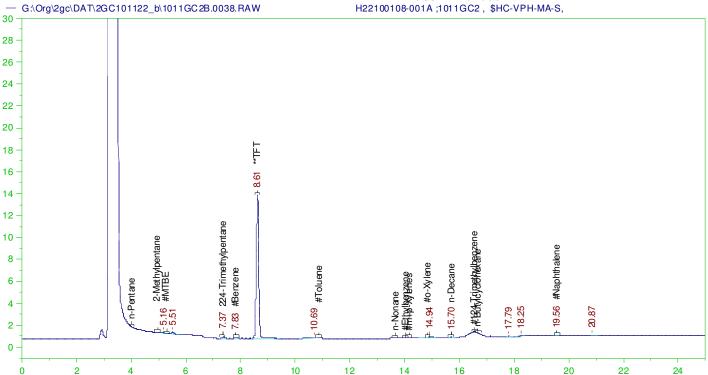
DRO Area:3686.125 DRO Amount: 10.29024
TEH Area:52564.25 TEH Amount: 146.7391
C9-C18 Area:16273.12 C9-C18 Amount: 46.11622
C19-C36 Area:22937.94 C19-C36 Amount: 63.09267

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-001A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2.0038.RAW

Date & Time Acquired: 10/12/2022 7:51:29 AM Method File: G:\Org\2GC\Methods\10112236.MET Calibration File: G:\Org\2GC\Cals\GC2100722.cal

Sample Weight: 50 Dilution: 1 S.A.: 1


Mean RF for C9 to C10 Aromatic Hydrocarbons: 721.0174 Rt range for C9 to C10 Aromatics: 14.931 to 19.454 Aromatic Hydrocarbon Range Area and Quantitation:

C9-C10 Aromatics Area:2498.541 C9-C10 Aromatics Amount: 6.930597E-02

TARGET ANALYTES	RT	CAL RRT	RRT	AREA	AMOUNT	FLAG
MTBE	•		•		.1	U
Benzene	7.836	7.836	7.836	145	.05	U
Toluene	10.849	10.849	10.849	234	.05	U
Ethylbenzene	•		•		.05	U
m+p-Xylenes	14.155	14.155	14.155	73	.05	U
o-Xylene	•		•		.05	U
124-Trimethylbenzene	•		•		.05	U
Naphthalene	19.561	19.561	19.561	537	.1	U
SURROGATE COMPOUND	RT	ACTUAL	MEASU	JRED	%REC QC LIMIT	ΓS
**TRIFLUOROTOLUENE	8.608	2.5	2.077	7	83.1 70-130	

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-001A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2B.0038.RAW

Date & Time Acquired: 10/12/2022 7:51:29 AM Method File: G:\Org\2GC\Methods\10112237B.MET Calibration File: G:\Org\2GC\Cals\GC2100722B.cal

Sample Weight: 50 Dilution: 1 S.A.: 1

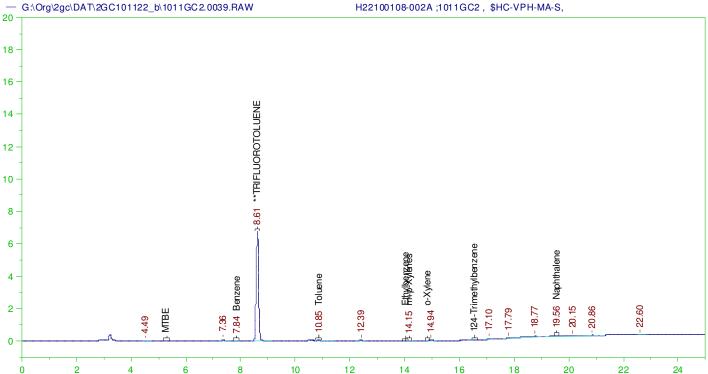
Mean RF for C5 to C8 Aliphatic Hydrocarbons: 926.2681 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 807.8274

Mean RF for all calibrated compounds: 947.1428

Rt range for Gasoline Range Organics: 4.851 to 15.799

Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.907 to 13.558 Rt range for C9 to C12 Aliphatic Hydrocarbons: 13.608 to 19.459

SURROGATE COMPOUND ACTUAL MEASURED 8.614 2.5 84.79


GRO Area:3685.398 GRO Amount: 0.0778214 TPH Area: 4559.773 TPH Amount: 9.628482E-02

Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

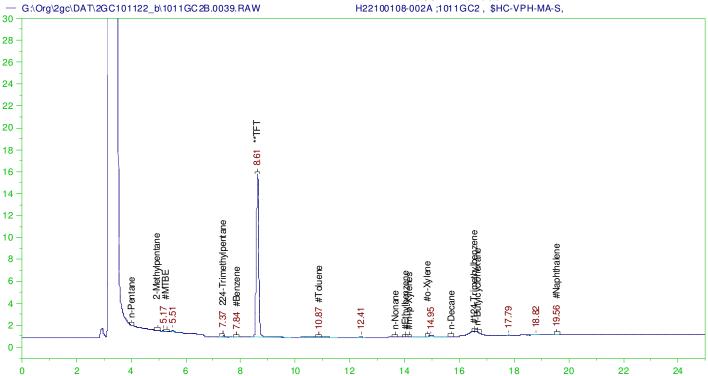
C5-C8 Area:2679.586 C5-C8 Amount: 5.785768E-02 C9-C12 Area:1491.626 C9-C12 Amount: 3.692933E-02

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-002A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2.0039.RAW

Date & Time Acquired: 10/12/2022 8:22:36 AM Method File: G:\Org\2GC\Methods\10112236.MET Calibration File: G:\Org\2GC\Cals\GC2100722.cal

Sample Weight: 50 Dilution: 1 S.A.: 1


Mean RF for C9 to C10 Aromatic Hydrocarbons: 721.0174 Rt range for C9 to C10 Aromatics: 14.931 to 19.454 Aromatic Hydrocarbon Range Area and Quantitation:

C9-C10 Aromatics Area:2163.397 C9-C10 Aromatics Amount: 6.000957E-02

TARGET ANALYTES	RT	CAL RRT	RRT	AREA	AMOUNT	FLAG
MTBE	•	•	•		.1	U
Benzene	7.836	7.836	7.836	157	.05	U
Toluene	10.851	10.851	10.851	330	.05	U
Ethylbenzene	·	•			.05	U
m+p-Xylenes	14.149	14.149	14.149	52	.05	U
o-Xylene	·	•	•		.05	U
124-Trimethylbenzene	·	•			.05	U
Naphthalene	19.559	19.559	19.559	346	.1	U
SURROGATE COMPOUND	RT	ACTUAL	MEASU	RED	%REC QC	LIMITS
**TRIFLUOROTOLUENE	8.609	2.5	2.373		94.91 70-	130

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-002A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2B.0039.RAW

Date & Time Acquired: 10/12/2022 8:22:36 AM Method File: G:\Org\2GC\Methods\10112237B.MET Calibration File: G:\Org\2GC\Cals\GC2100722B.cal

Sample Weight: 50 Dilution: 1 S.A.: 1

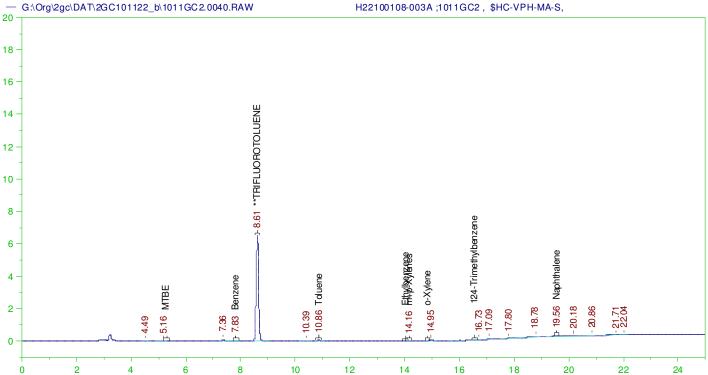
Mean RF for C5 to C8 Aliphatic Hydrocarbons: 926.2681 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 807.8274

Mean RF for all calibrated compounds: 947.1428

Rt range for Gasoline Range Organics: 4.851 to 15.799

Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.907 to 13.558 Rt range for C9 to C12 Aliphatic Hydrocarbons: 13.608 to 19.459

SURROGATE COMPOUND ACTUAL MEASURED RT 8.615 2.5 2.426 97.06


GRO Area:6448.688 GRO Amount: 0.1361714 TPH Area:6867.063 TPH Amount: 0.1450059

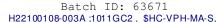
Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

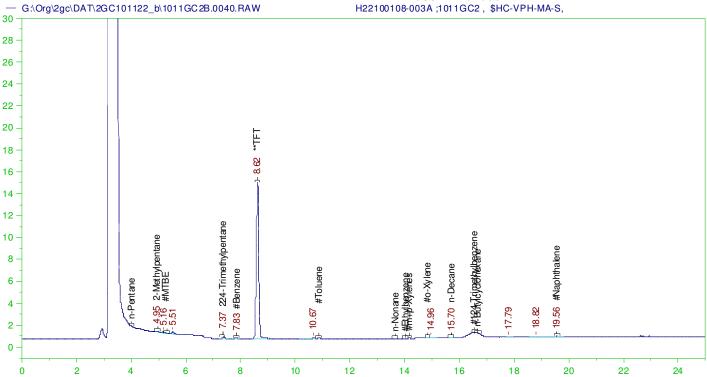
C5-C8 Area:4775.164 C5-C8 Amount: 0.1031054 C9-C12 Area:1942.025 C9-C12 Amount: 0.0480802

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-003A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2.0040.RAW

Date & Time Acquired: 10/12/2022 8:53:37 AM Method File: G:\Org\2GC\Methods\10112236.MET Calibration File: G:\Org\2GC\Cals\GC2100722.cal


Sample Weight: 50 Dilution: 1 S.A.: 1


Mean RF for C9 to C10 Aromatic Hydrocarbons: 721.0174 Rt range for C9 to C10 Aromatics: 14.931 to 19.454 Aromatic Hydrocarbon Range Area and Quantitation:

C9-C10 Aromatics Area:2274.014 C9-C10 Aromatics Amount: 6.307793E-02

TARGET ANALYTES	RT	CAL RRT	RRT	AREA	AMOUNT	FLAG
MTBE	·	•	•		.1	U
Benzene	7.831	7.831	7.831	144	.05	U
Toluene	10.859	10.859	10.859	130	.05	U
Ethylbenzene	•	•			.05	U
m+p-Xylenes	14.156	14.156	14.156	69	.05	U
o-Xylene	·	•	•		.05	U
124-Trimethylbenzene	·	•	•		.05	U
Naphthalene	19.558	19.558	19.558	363	.1	U
SURROGATE COMPOUND	RT	ACTUAL	MEASU	IRED	%REC QC LIMI	TS
**TRIFLUOROTOLUENE	8.61	2.5	2.28		91.18 70-130	

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-003A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2B.0040.RAW

Date & Time Acquired: 10/12/2022 8:53:37 AM Method File: G:\Org\2GC\Methods\10112237B.MET Calibration File: G:\Org\2GC\Cals\GC2100722B.cal

Sample Weight: 50 Dilution: 1 S.A.: 1

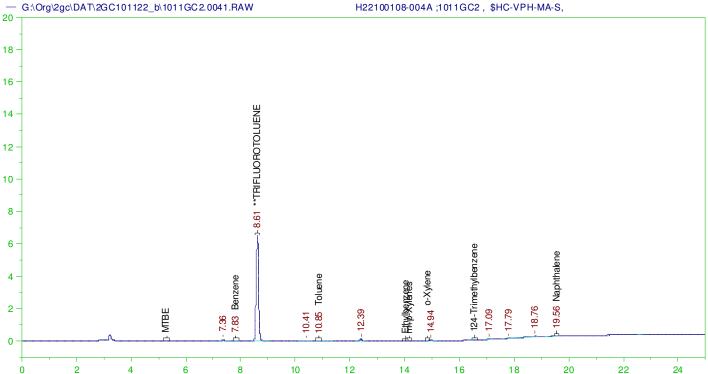
Mean RF for C5 to C8 Aliphatic Hydrocarbons: 926.2681 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 807.8274

Mean RF for all calibrated compounds: 947.1428

Rt range for Gasoline Range Organics: 4.851 to 15.799

Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.907 to 13.558 Rt range for C9 to C12 Aliphatic Hydrocarbons: 13.608 to 19.459

SURROGATE COMPOUND MEASURED ACTUAL %REC 8.615 2.5 2.292 91.7


GRO Area:3482.867 GRO Amount: 7.354471E-02 TPH Area:4134.766 TPH Amount: 8.731029E-02

Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

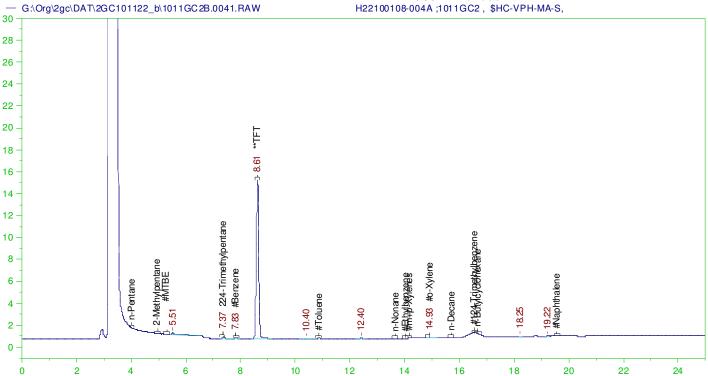
C5-C8 Area:2832.68 C5-C8 Amount: 6.116328E-02 C9-C12 Area:1101.879 C9-C12 Amount: 2.728007E-02

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-004A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2.0041.RAW

Date & Time Acquired: 10/12/2022 9:24:29 AM Method File: G:\Org\2GC\Methods\10112236.MET Calibration File: G:\Org\2GC\Cals\GC2100722.cal

Sample Weight: 50 Dilution: 1 S.A.: 1


Mean RF for C9 to C10 Aromatic Hydrocarbons: 721.0174 Rt range for C9 to C10 Aromatics: 14.931 to 19.454 Aromatic Hydrocarbon Range Area and Quantitation:

C9-C10 Aromatics Area:1589.392 C9-C10 Aromatics Amount: 4.408749E-02

TARGET ANALYTES	RT	CAL RRT	RRT	AREA	AMO	UNT FLAG	ŗ
MTBE	·	•	•		.1	U	
Benzene	7.83	7.83	7.83	135	.05	U	
Toluene	10.849	10.849	10.849	324	.05	U	
Ethylbenzene	·	•	•		.05	U	
m+p-Xylenes	·	•			.05	U	
o-Xylene	·	•			.05	U	
124-Trimethylbenzene	·	•			.05	U	
Naphthalene	19.557	19.557	19.557	282	.1	U	
SURROGATE COMPOUND	RT	ACTUAL	MEASU	RED	%REC	QC LIMITS	
**TRIFLUOROTOLUENE	8.609	2.5	2.277		91.09	70-130	

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-004A ;1011GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101122_b\1011GC2B.0041.RAW

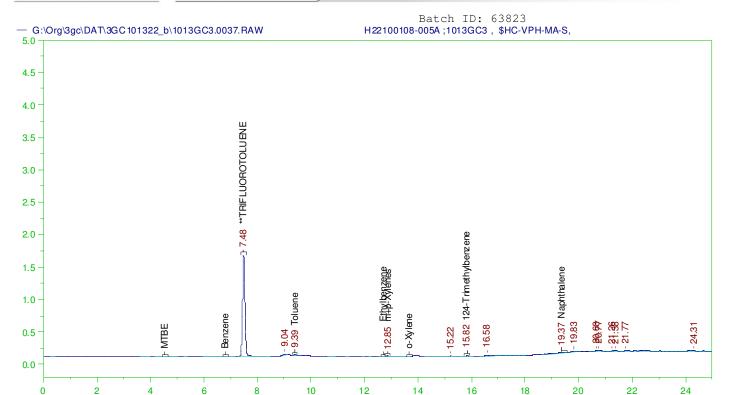
Date & Time Acquired: 10/12/2022 9:24:29 AM Method File: G:\Org\2GC\Methods\10112237B.MET Calibration File: G:\Org\2GC\Cals\GC2100722B.cal

Sample Weight: 50 Dilution: 1 S.A.: 1

Mean RF for C5 to C8 Aliphatic Hydrocarbons: 926.2681 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 807.8274

Mean RF for all calibrated compounds: 947.1428

Rt range for Gasoline Range Organics: 4.851 to 15.799


Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.907 to 13.558 Rt range for C9 to C12 Aliphatic Hydrocarbons: 13.608 to 19.459

SURROGATE COMPOUND RT ACTUAL MEASURED 8.615 2.5 93.19

GRO Area:4379.648 GRO Amount: 9.248127E-02 TPH Area: 4592.758 TPH Amount: 9.698132E-02

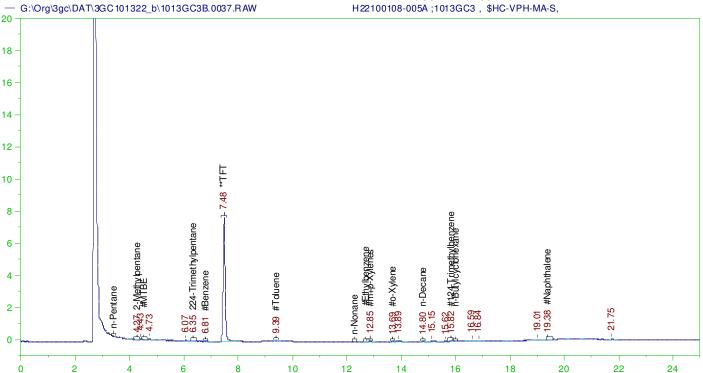
Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

C5-C8 Area:3948.109 C5-C8 Amount: 8.524766E-02 C9-C12 Area:644.6466 C9-C12 Amount: 1.596001E-02

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-005A ;1013GC3 , \$HC-VPH-MA-S,
Raw File: G:\Org\3gc\DAT\3GC101322_b\1013GC3.0037.RAW

Date & Time Acquired: 10/14/2022 7:18:38 AM Method File: G:\Org\3gc\Methods\10132237.MET Calibration File: G:\Org\3gc\Cals\GC3031122.CAL


Sample Weight: 50 Dilution: 1 S.A.: 1

Mean RF for C9 to C10 Aromatic Hydrocarbons: 209.904 Rt range for C9 to C10 Aromatics: 13.789 to 19.361 Aromatic Hydrocarbon Range Area and Quantitation:

TARGET ANALYTES	RT	CAL RRT	RRT	AREA	AM	OUNT	FLAG
MTBE	•	•	•		.1		U
Benzene	·	•	•		.0	5	U
Toluene	9.386	9.386	9.386	74	.0	5	U
Ethylbenzene	·	•			.0	5	U
m+p-Xylenes	12.853	12.853	12.853	110	.0	5	U
o-Xylene	·	•	•		.0	5	U
124-Trimethylbenzene	15.824	15.824	15.824	67	.0	5	U
Naphthalene	19.372	19.372	19.372	55	.1		U
SURROGATE COMPOUND	RT	ACTUAL	MEASU	IRED	%REC	QC LIMI	TS
**TRIFLUOROTOLUENE	7.484	2.5	2.287	,	91.47	70-130	

Batch ID: 63823 H22100108-005A;1013GC3, \$HC-VPH-MA-S,

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-005A ;1013GC3 , \$HC-VPH-MA-S, Raw File: G:\Org\3gc\DAT\3GC101322_b\1013GC3B.0037.RAW

Date & Time Acquired: 10/14/2022 7:18:38 AM Method File: G:\Org\3gc\Methods\10132237B.MET Calibration File: G:\Org\3gc\Cals\GC3031122B.CAL

Sample Weight: 50 Dilution: 1 S.A.: 1

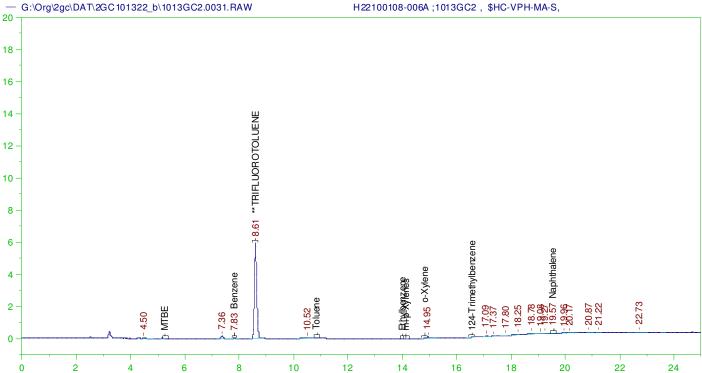
Mean RF for C5 to C8 Aliphatic Hydrocarbons: 470.9312 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 341.9892

Mean RF for all calibrated compounds: 463.4642

Rt range for Gasoline Range Organics: 4.151 to 14.901

Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.32 to Rt range for C9 to C12 Aliphatic Hydrocarbons: 12.234 to


SURROGATE COMPOUND ACTUAL MEASURED 7.484 2.5 2.603 104.11


GRO Area:2791.242 GRO Amount: 0.1204512 TPH Area:4466.625 TPH Amount: 0.1927495

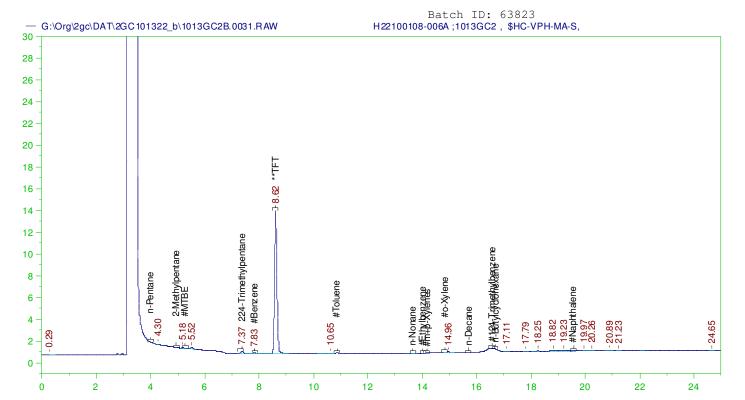
Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

C5-C8 Area:1842.172 C5-C8 Amount: 7.823528E-02 C9-C12 Area:2194.104 C9-C12 Amount: 0.1283142

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-006A ;1013GC2 , \$HC-VPH-MA-S, Raw File: G:\Org\2gc\DAT\2GC101322_b\1013GC2.0031.RAW

Date & Time Acquired: 10/14/2022 3:14:04 AM Method File: G:\Org\2GC\Methods\10132231.MET Calibration File: G:\Org\2GC\Cals\GC2100722.cal


Sample Weight: 50 Dilution: 1 S.A.: 1

Mean RF for C9 to C10 Aromatic Hydrocarbons: 721.0174 Rt range for C9 to C10 Aromatics: 14.931 to 19.454 Aromatic Hydrocarbon Range Area and Quantitation:

C9-C10 Aromatics Area:2138.369 C9-C10 Aromatics Amount: 5.931533E-02

TARGET ANALYTES MTBE	RT •	CAL RRT	RRT.	AREA	AMOUNT .1	FLAG U
Benzene	7.831	7.831	7.831	171	.05	U
Toluene	•				.05	U
Ethylbenzene					.05	U
m+p-Xylenes					.05	U
o-Xylene	•				.05	U
124-Trimethylbenzene	•				.05	U
Naphthalene	19.566	19.566	19.566	70	.1	U
SURROGATE COMPOUND **TRIFLUOROTOLUENE	RT 8.611	ACTUAL 2.5	MEASU 2.075		%REC QC LIM: 83. 70-130	ITS

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-006A;1013GC2 , \$HC-VPH-MA-S,
Raw File: G:\Org\2gc\DAT\2GC101322_b\1013GC2B.0031.RAW

Date & Time Acquired: 10/14/2022 3:14:04 AM Method File: G:\Org\2GC\Methods\10132231B.MET Calibration File: G:\Org\2GC\Cals\GC2100722B.cal

Sample Weight: 50 Dilution: 1 S.A.: 1

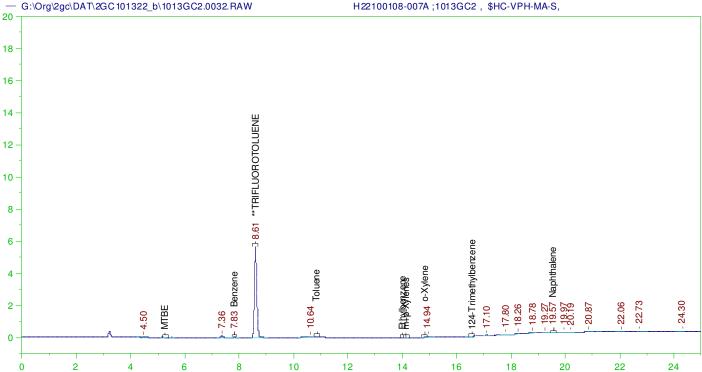
Mean RF for C5 to C8 Aliphatic Hydrocarbons: 926.2681 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 807.8274

Mean RF for all calibrated compounds: 947.1428

Rt range for Gasoline Range Organics: 4.851 to 15.799

Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.907 to 13.558 Rt range for C9 to C12 Aliphatic Hydrocarbons: 13.608 to 19.459

 SURROGATE COMPOUND
 RT
 ACTUAL
 MEASURED
 %REC

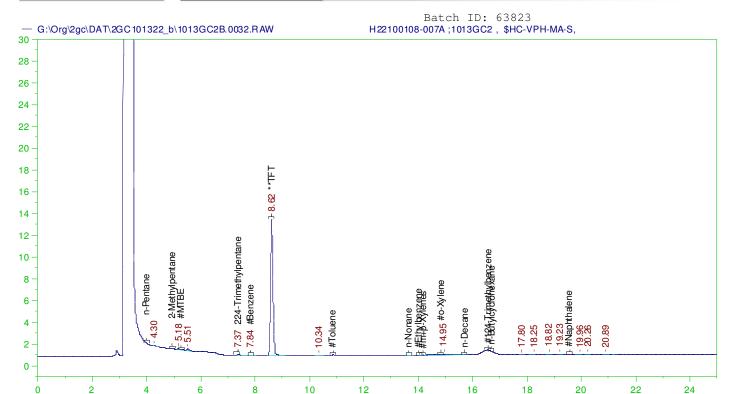

 **TFT
 8.616
 2.5
 2.128
 85.12

GRO Area:4073.656 GRO Amount: 0.0860199
TPH Area:6610.914 TPH Amount: 0.139597

Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

Batch ID: 63823 H22100108-007A;1013GC2, \$HC-VPH-MA-S,

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT


Sample Name: H22100108-007A ;1013GC2 , \$HC-VPH-MA-S,
Raw File: G:\Org\2gc\DAT\2GC101322_b\1013GC2.0032.RAW

Date & Time Acquired: 10/14/2022 3:45:09 AM Method File: G:\Org\2GC\Methods\10132231.MET Calibration File: G:\Org\2GC\Cals\GC2100722.cal

Sample Weight: 50 Dilution: 1 S.A.: 1

Mean RF for C9 to C10 Aromatic Hydrocarbons: 721.0174 Rt range for C9 to C10 Aromatics: 14.931 to 19.454 Aromatic Hydrocarbon Range Area and Quantitation:

TARGET ANALYTES MTBE	RT •	CAL RRT	RRT.	AREA		AMOUNT	FLAG U
Benzene	7 . 835	7.835	7.835	105		.05	U
Toluene	•	•				.05	U
Ethylbenzene						.05	U
m+p-Xylenes		•				.05	U
o-Xylene	·	•				.05	U
124-Trimethylbenzene	·	•			.05		U
Naphthalene	19.565	19.565	19.565	59	.1		U
SURROGATE COMPOUND	RT	ACTUAL	MEASURED		%REC	QC LIMI	ITS
**TRIFLUOROTOLUENE	8.611	2.5	1.99		79.61	70-130	

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-007A; 1013GC2, \$HC-VPH-MA-S, Raw File: $G:\Org\2gc\DAT\2GC101322_b\1013GC2B.0032.RAW$

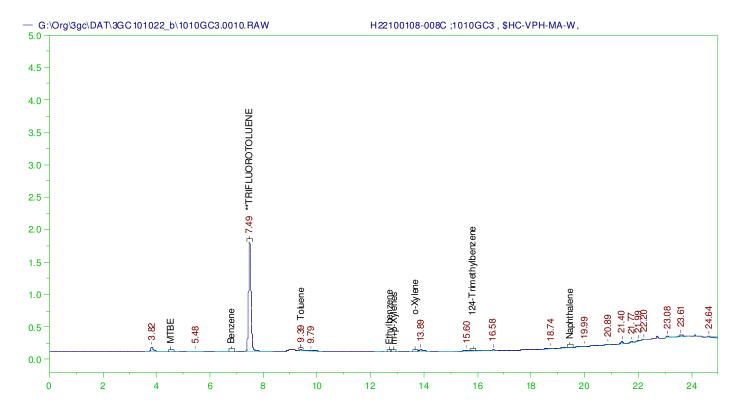
Date & Time Acquired: 10/14/2022 3:45:09 AM Method File: G:\Org\2GC\Methods\10132231B.MET Calibration File: G:\Org\2GC\Cals\GC2100722B.cal

Sample Weight: 50 Dilution: 1 S.A.: 1

Mean RF for C5 to C8 Aliphatic Hydrocarbons: 926.2681 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 807.8274

Mean RF for all calibrated compounds: 947.1428

Rt range for Gasoline Range Organics: 4.851 to 15.799


Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.907 to 13.558 Rt range for C9 to C12 Aliphatic Hydrocarbons: 13.608 to 19.459

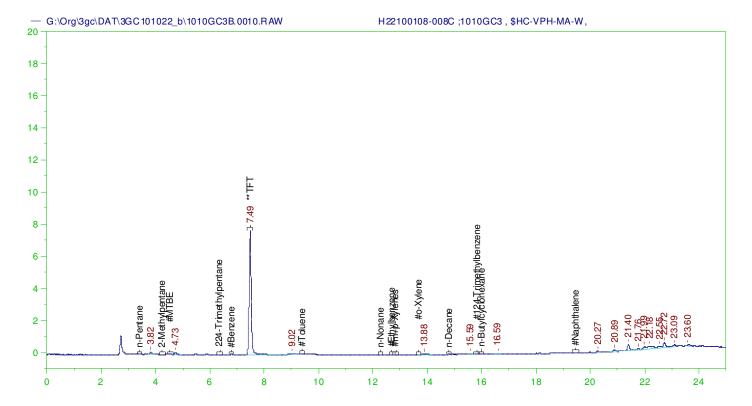
 SURROGATE COMPOUND
 RT
 ACTUAL
 MEASURED
 %REC

 **TFT
 8.617
 2.5
 2.031
 81.22

GRO Area:4327.758 GRO Amount: 9.138554E-02 TPH Area:5574.922 TPH Amount: 0.1177208

Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

VPH AROMATICS PHOTOIONIZATION DETECTOR CHROMATOGRAM REPORT


Sample Name: H22100108-008C ;1010GC3 , \$HC-VPH-MA-W,
Raw File: G:\Org\3gc\DAT\3GC101022_b\1010GC3.0010.RAW

Date & Time Acquired: 10/10/2022 6:37:28 PM Method File: G:\Org\3gc\Methods\10102210.MET Calibration File: G:\Org\3gc\Cals\GC3031122.CAL

Sample Weight: 5 Dilution: 1 S.A.: 1

Mean RF for C9 to C10 Aromatic Hydrocarbons: 209.904 Rt range for C9 to C10 Aromatics: 13.789 to 19.361 Aromatic Hydrocarbon Range Area and Quantitation:

TARGET ANALYTES MTBE	RT	CAL RRT	RRT.	AREA	AM:	TNUC	FLAG U
Benzene	·				.5		U
Toluene	9.394	9.394	9.394	65	.5		U
Ethylbenzene	•	•	•		.5		U
m+p-Xylenes	•	•	•		.5		U
o-Xylene	•		•		.5		U
124-Trimethylbenzene	•		•		.5		U
Naphthalene	•	•	•		1.		U
SURROGATE COMPOUND	RT	ACTUAL	MEASU	JRED	%REC	QC LIMIT	TS.
**TRIFLUOROTOLUENE	7.485	25.	24.63	33	98.53	70-130	

VPH ALIPHATICS FLAME IONIZATION DETECTOR CHROMATOGRAM REPORT

Sample Name: H22100108-008C ;1010GC3 , \$HC-VPH-MA-W, Raw File: G:\Org\3gc\DAT\3GC101022_b\1010GC3B.0010.RAW

Date & Time Acquired: 10/10/2022 6:37:28 PM Method File: G:\Org\3gc\Methods\10102210B.MET Calibration File: G:\Org\3gc\Cals\GC3031122B.CAL

Sample Weight: 5 Dilution: 1 S.A.: 1

Mean RF for C5 to C8 Aliphatic Hydrocarbons: 470.9312 Mean RF for C9 to C12 Aliphatic Hydrocarbons: 341.9892

Mean RF for all calibrated compounds: 463.4642

Rt range for Gasoline Range Organics: 4.151 to 14.901

Rt range for C5 to C8 Aliphatic Hydrocarbons: 3.32 to 12.184 Rt range for C9 to C12 Aliphatic Hydrocarbons: 12.234 to 19.3

GRO Area:1601.906 GRO Amount: 0.6912751 TPH Area:12126.11 TPH Amount: 5.232815

Aliphatic Hydrocarbon Areas and Quantitations uncorrected for Aromatics:

Work Order Receipt Checklist

WGM Group Inc

Login completed by: Taylor K. Jones

H22100108

Date Received: 10/5/2022

Login completed by:	rayior in conce		Date	110001104. 10/0/2022
Reviewed by:	BL2000\wjohnson		Re	eceived by: tkj
Reviewed Date:	10/16/2022		Ca	rrier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all s	shipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present
Custody seals intact on all s	sample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed wh	en relinquished and received?	Yes 🔽	No 🗌	
Chain of custody agrees wit	th sample labels?	Yes 🔽	No 🗌	
Samples in proper containe	r/bottle?	Yes 🔽	No 🗌	
Sample containers intact?		Yes 🔽	No 🗌	
Sufficient sample volume for	or indicated test?	Yes 🔽	No 🗌	
All samples received within (Exclude analyses that are c such as pH, DO, Res Cl, Sc	considered field parameters	Yes √	No 🗌	
Temp Blank received in all s	shipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable
Container/Temp Blank temp	perature:	1.2°C On Ice		
Containers requiring zero he bubble that is <6mm (1/4").	eadspace have no headspace or	Yes 🗸	No 🗌	No VOA vials submitted
Water - pH acceptable upor	n receipt?	Yes 🗌	No 🗹	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

Metals samples were preserved to pH <2 in laboratory upon receipt. In accordance with the Clean Water Act, these samples must be held for 24 hours prior to analysis. tj 10/5/22

Maling Address City, State, Zp

unchasse Orde

Small

Chain of Custody & Analytical Request Record

6 **GUSTIONS** SAMPLEY WI Page (PLENSE CR Comments

are se pe Calzarp. com □ LEVEL IV □ NELAC □ EDD/EDT (contact laborato)), □ Other NON 140 Report Information or different than Ac-SL TYLER Receive Report - Hard Copy H Email TET Mading Address City, State, Zp Contact Email 96 @ Wandaroup, com Ž STI GIROLP mail h -82 Account Information (BM Sontact MIRALDA MAR MMILLO 220512. CompanyPlame DON HOW

Project Information		Matrix Codes			Analysis Requested	ested	5	
Project Name, PWSID, Permit, etc. SALVARLITAN HOUSE PINI	N House PhI	W. Water	hy		15			All furnaround times are standard unless marked as
ST-50-072 " PERSTA PRINTED TO SOUTH STORY	£150-0h2	S - Solids	ממי	, n	17			RUSH.
Sample Origin State MT EPA/State C	EPA/State Compliance XYes DNo	V - Vegetation S - Ricassav	By	t	1-7			MIST he contacted orien to
Lab provided preservatives were used Xes No		0 - Other	1+	t d	Hot		pe	RUSH sample submittal for
MINING CLIENTS, please indicate sample type. "If ore has been processed or refried, call before sending. □ Byproduct 11 (e)2 insterior. □ Unprocessed one (i)	ple type. Unprocessed one (NOT ground or refined)*	DW - Water	SIV.		5 0		Attach	charges and scheduling – See Instructions Page
Sample Identification	Collection	number of Matrix	0 22	¥	22.50		99	ELITAB ID
(Name Locution, minned, etc.)	Date Time	Contamen (See Codes	H	1	8		S	TAT Laboratory Cite Only
1-128-2150221	10/4/22 1139	3 5	×	×	×			H22100108
2 / 501.7.	6511	4	3	- 3	`			

			8					DateTime	(NS220		Amount
× × ×	×××	-× ×	×	×	×			Received by (print)	Market by laboratory Bring of	SE ONLY	CC Cash Check
3 5	×	3 5 7	2 0 10	3 2	3		7 7	go net Ellent	Sgrahiro	LABORATORY USE	Receipt Temp Tegag Blank Se loe
3 / 5132-1	2-225	583-1	5133-2	2 584-2	> IMS A .	On the second	" TRIP BLANK	Custody Paradient by total and the Constant Cons	be signed Reinspained by (print), Data Time	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER OF THE OWNER OW	Shipped By Cooler ID(s) (P) N (S) B (P) N

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility, All subcontracted data will be clearly notated on your analytical report. Redover

EU-CDC-06/08 v.2

Page 99 of 101

Trust our People. Trust our Data.

BRITINGS, MT 888,735,4489 . Casper, NY 888,235,0515 . Girette, NY 866,586,7175 . Holens, MT 877,472,0711

BOTTLE ORDER 41961

@1961(c

WGM Group Inc SHIPPED

TO:

Contact: Brent Merritt

1111 East Broadway

Missoula MT 59802-

(406) 728-4611 Phone:

Samaritan House Project.

Order Created by: Jessica C. Smith Shipped From: Helena, MT Ship Date: 9/13/2022

VIA: Ground

E S	Samp
	Notes
	Preservative
Critical	Time
	Tests
	Method
Bottles	Samp
	Bottle Size/Type

Soils (8 Sets)				
4 oz Wide Mouth Amber	3 E6010.20	3 E6010.20 Metals by ICP/ICPMS, Total	RCRA mets	
Glass	SW3050 B	SW3050 B Total Metals Digestion by SW3050B	120	
	SW7471B	Mercury in Solid By CVAA		
	SW7471B	Mercury Digestion by SW7471B		
	SW8015M	SW8015M Hydrocarbons, Extractable Petroleum- Scm		
	MA-VPH	Volatile Petroleum Hydrocarbons		
	SW8260B	8260-Volatile Organic Compounds - Short List		

Water (4 Sets)					
250 mL. Plastic	1 E6010.20 SW3010A SW7470A SW7470A	Metals by ICP/ICPMS, Total Recoverable Metals Digestion by SW3010A Mercury, Total Mercury Digestion by SW7470A	HNO3		٠
40 mL Clear Glass VOA	3 SW8260B	8260-Votatile Organic Compounds-Short List	HCL.	Zero headspace	-
40 mL Clear Glass VOA	3 MA-VPH	Volatile Petroleum Hydrocarbons	HCL	Zero headspace	+
1 Liter Amber Glass Narrow Mouth	2 SW8015M	2 SW8015M Hydrocarbons, Extractable SW8015MPetroleum Screen	H2SO4		-
Supplies (3 Sets)					
Trip Blank	1 FIELD	Supplies	HCL.	Zero headspace	+
Return Shipping Packet (3 Sets	acket (3 Sets	(\$			
Chain of Custody	1 FIELD	Supplies			+
Custody Seal	1 FIELD	Supplies			1
Temp Blank	1 FIELD	Supplies			1
Misc	1 FIELD	Supplies		Return shipping label for client's preferred shipper	-

omments

HNO3 - Nitric Acid H2SO4 - Sulfuric Acid	H2SO4 - Sulfuric Acid	NaOH - Sodium Hydroxide	We strongly suggest that the samples are
ZnAc - Zinc Acetate HCl - Hydrochloric	HCI - Hydrachlaric Acid	H3PO4 - Phosphoric Acid	shipped the same day as they are collected.
Material Safety Data Shee Corrosive Chemicals: Naric, Sulfu	is(MSDS) Available @ Enviro, Phosphoric, Hydrochloric Ac	Material Safety Data Sheets(MSDS) Available @ EnergyLab.com ->Services -> MSDS Sheets Corrosive Chemicals: Nitric, Sulfuric, Phosphoric, Hydrochloric Acids and Sodium Hydroxide. Zinc Acetale is a skin irritant.	ant.
Subcontracting of sample analyses will be indicated within the Laborator	to an outside laboratory may be nec y Analysical Report.	quired. If so, Energy Laboratories will utilize its branch. lab	Subcommeding of sample analyses to an outside laboratory may be required. If so, Energy Laboratories will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analysical Report.

Table D-1 Samaritan House Phase II ESA Soil Analytical Results Kalispell, Montana

	Analytical	MT Background	DEQ-Adjusted Residential Direct	DEQ-Adjusted Leaching to	SB1-1	SB1-2	SB2-1	SB2-2	SB3-1	SB3-2	SB4-2
Analyte	Method	Threshold Values ¹ (mg/Kg)	Contact SL ² (mg/Kg)	Groundwater SL ³ (mg/Kg)	2.5 - 4 ft bgs	6 - 8 ft bgs	2 - 4 ft bgs	6 - 8 ft bgs	3 - 4 ft bgs	6 - 8 ft bgs	(DUP of SB3-2)
EXTRACTABLE PETROLEUM HYDROC	ARBONS (EPH)										
TEH Screen		np	200 *	200 *	7.9 J	9.3 J	27	<20	826 *	<20	<20
C9-C18 Aliphatics	MDEP EPH	np	110	53,000					<10		
C19-C36 Aliphatics	MDE. EIII	np	24,000	considered immobile					165		
C11-C22 Aromatics		np	490	370					129		
VOLATILE PETROLEUM HYDROCARBOI	NS (VPH)					2.1	2.1		2.1		
C5-C8 Aliphatics C9-C12 Aliphatics		np	52 77	220 11,000	<2.2 <2.2	<2.4 <2.4	<2.1 <2.1	<2.5 <2.5	<2.1 <2.1	<2.5 <2.5	<2.5 <2.5
C9-C12 Ariphatics		np np	130	130	<2.2	<2.4	<2.1	<2.5	<2.1	<2.5	<2.5 <2.5
MTBE		np	52	0.078	<0.11	<0.12	<0.10	<0.12	<0.10	<0.13	<0.13
Benzene	MDEP VPH	np	1.3	0.07	<0.054	<0.059	<0.052	<0.062	<0.052	<0.064	<0.063
Toluene		np	610	21	<0.054	<0.059	<0.052	<0.062	<0.052	<0.064	<0.063
Ethylbenzene		np	6.4	26	<0.054	< 0.059	<0.052	< 0.062	< 0.052	< 0.064	< 0.063
Xylenes		np	72	320	<0.054	<0.059	<0.052	<0.062	<0.052	< 0.064	< 0.063
Naphthalene		np	2.2	12	<0.11	<0.12	<0.10	<0.12	<0.10	<0.13	<0.13
VOLATILE ORGANIC COMPOUNDS (VOC	s)										
Benzene		np	1.3	0.07	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromobenzene		np	29	0.042	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromochloromethane		np	15	0.022	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane		np	0.29	0.028	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform Bromomethane		np np	19 0.68	0.021 0.025	<0.20 <0.20						
Carbon Tetrachloride		np	0.65	0.012	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene		np	28	0.068	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroethane		np	540	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	SW 8260B	np	0.32	0.19	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloromethane		np	11	1.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Chlorotoluene		np	160	0.23	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-Chlorotoluene		np	160	0.24	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorodibromomethane		np	8.3	0.00023	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromoethane (EDB)		np	0.036	0.00048	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromomethane		np	2.4	0.0021	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene		np	180	0.58	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,3-Dichlorobenzene		np	np	np	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,4-Dichlorobenzene		np	2.6	0.072	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorodifluoromethane 1,1-Dichloroethane		np	8.7 3.6	15 0.00078	<0.20 <0.20						
1,2-Dichloroethane (DCA)		np np	0.46	0.011	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethene		np	23	0.0025	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,2-Dichloroethene		np	16	0.021	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,2-Dichloroethene		np	7.0	0.031	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane		np	1.6	0.0017	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,3-Dichloropropane		np	160	0.0095	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,2-Dichloropropane		np	np	np	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloropropene		np	np	np	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropene		np	np	np	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,3-Dichloropropene		np	1.8	0.13	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl -t-butyl ether	SW 8260B	np	52	0.078	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride (Dichloromethane)	OVV 0200B	np	35 2,700	0.0013 1.2	<0.20 <4.0						
Methyl Ethyl Ketone Styrene		np np	600	0.11	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-2-Tetrachloroethane		np	2.0	0.00022	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2,2-Tetrachloroethane		np	0.60	0.00079	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Tetrachloroethene (Tetrachloroethylene)		np	8.1	0.0023	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane		np	810	0.070	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane		np	0.15	0.0095	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethene (Trichloroethylene)		np	0.41	0.0018	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane		np	2,300	12.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane		np	0.0051	0.0000032	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Chloride (Chloroethene)		np	0.059	0.00068	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene Toluene		np	6.4 610	26 21	<0.20 <0.20						
Xylenes		np np	72	320	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
RESOURCE CONSERVATION AND RECO	OVERY ACT (RCE			OEU	-0.20	-5.20	-5.20	-0.20	-0.20		.5.20
Arsenic		22.5	n/a	22.5	6	6	5	6	17	7	6
Barium	SW 6010B	429	1,500	421	73	271 D	103 D	293 D	107	582 D	353 D
Cadmium		0.7	7.1	3.8	<1	<1	<1	<1	<1	<1	<1
Chromium(III) Lead		41.7	np	1,800,000	10	20	12	27	12	21	24
	SW 6010B	29.8	200 ^d	140	6	13	7	16	41	13	16
	3W 00 10D	0.7	20	2.0	_1	_1	_1	_1	_1	_1	_1
Selenium Silver	3W 0010B	0.7 0.3	39 39	2.6 8.5	<1 <1	<1 <1	<1 2	<1 <1	<1 <1	<1 <1	<1 <1

Notes

- ¹ Background Concentrations of Inorganic Constituents in Montana Surface Soils. Prepared for Montana DEQ, September 2013.
- ² DEQ Surface/Subsurface Soil Screening Flowchart Part 1 Direct Contact. This process was used in conjunction with the most current applicable DEQ and EPA screening level sources ^{8,b,c} to list SLs (DEQ, 2021a).
- ³ DEQ Surface/Subsurface Soil Screening Flowchart Part 2 Leaching to Groundwater. This process was used in conjunction with the most current applicable DEQ and EPA screening level sources abc (as noted in the flowchart included in Appendix H) to list SLs (DEQ, 2021a).
- $^{\rm a}$ DEQ Tier 1 RBSLs for soil (DEQ, May 2018)
- ^b EPA RSLs for soil (TR=1E-06 THQ=0.1), May 2022
- ^c EPA RSLs for soil (TR=1E-06 THQ=1.0), May 2022
- DEQ Integrated Exposure Uptake Biokinetic Model (IEUBK) based EPA's Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK) version 2 (EPA, 2021a, DEQ, 2021)
- DEQ Montana Department of Environmental Quality
- SL Screening Level
- mg/kg milligrams per kilogram (ppm)
- * DEQ Risk-Based Corrective Action (RBCA) screening level used to determine whether EPH fractionation is required
- np Indicates no screening level is published for the indicated parameter
- ---- Indicates parameter was not analyzed
- J Indicates an estimated value, the analyte was present, but less than the Reporting Limit
- D Indicates Reporting Limit increased due to sample matrix

Bolded indicates analyte was detected above the Reporting Limit

Bolded/shaded indicates analyte exceeded the DEQ-Adjusted Leaching to Groundwater Screening Level

Table D-2 Samaritan House Phase II ESA Lead Dust Wipe Analytical Results Kalispell, Montana

	Analytical	EPA Dust-Le Lev																														
Analyte	Method	Floor Dust (ug/ft²)	Windowsill Dust (ug/ft²)	LD-1	LD-2	LD-3	LD-4	LD-5	LD-6	LD-7	LD-8	LD-9	LD-10	LD-11	LD-12	LD-13	LD-14	LD-15	LD-16	LD-17	LD-18	LD-19	LD-20	LD-21	LD-22	LD-23	LD-24	LD-25	LD-26	LD-27	LD-28	LD-30
Lead	NIOSH 9100/SW3050 SW 6010/6020	10	100	< 5.0	< 5.0	< 5.0	11	27	11	42	25	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	25	< 5.0	5.5	< 5.0	60	< 5.0

Notes:

¹EPA Dust Lead Clearance Levels as established in 40 CFR 745.65(b)

NIOSH - National Institute for Occupational Safety and Health

ug/ft² - micrograms per square foot

< the analyte was not detected by the laboratory above the indicated Reporting Limit

Bolded indicates analyte was detected above the Reporting Limit

Bolded/shaded indicates analyte exceeded the DEQ Dust-Lead Clearance Levels for Windowsill Dust indicates analyte exceeded the DEQ Dust-Lead Clearance Levels for Floor Dust

Montana DEQ - Waste Management and Remediation Division Data Validation Summary Form (Version 1.3.0, Revised 1/26/18)

Please fill out the information below, using one form for each lab batch (one form can be used for multiple analytical methods). The form will grow and adjust, based on your responses. Please include a discussion regarding the sampling event in the report that is sent to DEQ with this form. For additional instructions, please click the Open Complete Instructions button.

Basic Questions View example (Note: example optimized for viewing in Chrome browser) 1. Site/Facility name Samaritan House 2. Site code or facility ID (if applicable) 3. Release ID (if applicable) 4. Sample delivery H22100218 group 5. Name of DEQ-Sampling & Analysis Plan - Phase II Environmental Site Assessment and Building approved sampling Materials Inspection - Samaritan House Property, Kalispell, Montana plan 6. Date DEQ 9/8/2022 M/D/YY approved the sampling plan 7. Name of data Jordan Westenberg validator 8. Phone 406-360-0220 Date validated 12/6/2022 M/D/YY **Field Collection Questions** View example (Note: example optimized for viewing in Chrome browser) 10. Sample matrix ☐ Soil □ Sediment ☐ Surface water Groundwater Air (including soil gas) ○ Other Lead Dust Wipe ☐ Tap water 11. Sample collection M/D/YY 10/6/2022 start date 12. Sample collection 10/6/2022 M/D/YY end date 13. Analytical Add Method Analytical Method(s) methods used Use Add Method Delete Method Metals by ICP/ICPMS, Total Metals Digestion by SW3050B button to list multiple methods. Enter anv other methods in the field manually. **Laboratory-related Questions** View example (Note: example optimized for viewing in Chrome browser) 14. Laboratory name Energy Laboratories, Helena, MT & Billings, MT and location 15. Laboratory project Samaritan House Ph II ID 16. Were samples received in Yes Nο See Below Comments good condition and at appropriate temperature, chain-The sample jar for 220512-LD-29 was received by of-custody forms complete, and the lab but no sample was present inside all samples analyzed within holding times? Comments Yes No 16a. Were chain-of-custody forms complete?

	oreserved, and at perature (VOA no ropriate pH,	Yes	No		Comments
· · · ·		Yes	No		Comments
17. Were all labor control procedur and is data valid qualifiers?	es complied with	Yes	No S	ee Below	Comments
18. Were the total method blanks a total number of serequired by the r	t least 5% of the samples, or as	Yes	No		Comments
		Yes	No		Comments
20. Please list a	ny project samples ເ	used fo	or matrix spik	ke/matrix spik	e duplicates.
Add Sample	Lab ID		Field Sa	ample ID	Comments
Delete Sample	H22100218-001A	MS	220512	2-LD-01	
Delete Sample	H22100218-001AI	MSD	220512	2-LD-01	
Delete Sample	H22100218-021A	MS	220512	2-LD-21	
Delete Sample	H22100218-021AI	MSD	220512	2-LD-21	
21. Is the total null laboratory control 5% of the total null samples?	ol samples at least	Yes	No		Comments
Consultant/Valida	•	Vie	w example (N	Note: example op	stimized for viewing in Chrome browser)
or below screeni	ne project (i.e. at ng levels)?	Yes	No		Comments
	rted units ne sample matrix s in ug/L, not mg/	Yes	No		Comments
24. Do the analy	ect requirements	Yes	No		Comments
25. Do the laboratinclude all constito be analyzed or custody or under plan or other appropriate the comment?	ituents requested on the chain-of- r the sampling	Yes	No		Comments
26. Is the number blanks (e.g. equi field blanks) equ	ipment, trip, or al to at least 10% per of samples, or	Yes	No		Comments

27. Are field blanks contamination, dup collected as require duplicate percent dwithin data validation control limits? 28. Please provide	olicates ed, and field differences on quality		es No			Comments mail or CD) that lists		
evaluated in this su Please use the follow	ummary and	d lists any				,	·	
Lab ID		Field Sa	mple ID	Q	ualifiers	Comments (indicates the research	cate whether th esults high or lo	
Example 48310	-2.31E	Example	e GW-1		R	Sample dropped in	n lab and unrec	overable
Example 48310-	-2.32D	Example	e GW-2					
Please use the for qualifiers for unique				ee EPA's N	ational Function	nal Guidelines for n	nore information	n on
	Qualifier				Explanation	า		
	С		Pesti	cide and Ar	ochlor results c	onfirmed with GC/N	MS	
	J-			Estimat	ed value, may b	e biased low		
	J		An	alyte identif	ied, but concen	tration is estimated	I	
	J+			Estimate	d value, may b	e biased high		
	NJ			Tenta	tively identified	compound		
	R			5	ample result re	jected		
	U		Analyte a	nalyzed for	but not detecte	ed above quantitation	on limit	
	UJ					ut CRQL may be ina		
	Χ					using GC/MS, but u	unsuccessful	
If you wish to ma	inually enter	qualified	sample re	sults, plea	se use the table	below.		
Add Sample	Lab ID		Field Sa	ample ID	Qualifiers	,	ndicate whether e results high o	
Delete Sample								
29. What is the per	cent					Comments	 S	
completeness (sam		ed 96	6.7%	One	sample, 2205	12-LD-29 was col	lected but did	not get
versus valid sample	es collected	,			d into the san	nple jar and was r		
30. Was the compl	eteness go		es No		ugh 220512 I	Comments D-29 was not coll		
met?				/	•	as collected from t		JIE
				,	sentative loca		ano campio	
31. Does all data co		Y	es No)		Comments	3	
analytical methods quality objectives s		this						
project?								
32. Other general of	comments o	r observa	ations?					
Split Samples								
33. Did DEQ collec	t split samp	les?	es No		did not obtain	Comments split samples.	S	
Print Form		Save	As			Open Instructions	Hide	nstructions

(updated January 26, 2018)

This document was assembled by the Montana Department of Environmental Quality Contaminated Site Cleanup Bureau (DEQ) to formalize technical direction for conducting data validation. Data validation is a standardized review process for judging the analytical quality and usefulness of a discrete set of chemical data and is necessary to ensure that data of known and documented quality are used in making environmental decisions.

While these guidelines are generally used by DEQ, there may be circumstances that warrant a higher level of data validation review and DEQ reserves the right to require additional validation. For investigations where x-ray fluorescence (XRF) or other field screening equipment is used, provide an evaluation including the comparison and correlation of field screening data to laboratory confirmation data in the data validation discussion (please see DEQ's frequently asked questions at http://deq.mt.gov/Land/StateSuperfund/FrequentlyAskedQuestions for specifics associated with the use of XRF equipment and data collection/evaluation).

Please complete a separate data validation report for each sample batch as determined by the laboratory (Note: large data collection events may result in multiple batches). A brief summary of this validation report and the acceptability and usability of the data should be included in the text of the project report with the validation report included as an appendix. The data validation should include an assessment of data using the precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters:

<u>Precision</u>: The degree of mutual agreement between individual measurements of the same property under similar conditions.

Combined field and laboratory precision is evaluated by collecting and analyzing field duplicates and then calculating the variance between the samples, typically as a relative percent difference (RPD). Laboratory analytical precision is evaluated by analyzing matrix spike/matrix spike duplicate (MS/MSD) samples and using the results to calculate an RPD.

Accuracy: The degree of agreement between an analytical measurement and a reference accepted as a true value.

The accuracy of a measurement system can be affected by errors introduced by field contamination, sample preservation, sample handling, sample preparation, and analytical techniques. Analysis of matrix spike/matrix spike duplicate (MS/MSD) samples, laboratory control spikes (LCS) or blank spikes, surrogate standards, and method blanks are typically used to calculate the percent recovery (%R) for evaluating accuracy.

Please note that some methods, such as EPH and VPH, require calibration data. For such methods, please provide and verify the calibration data.

<u>Representativeness</u>: The degree to which sample data accurately and precisely represent the characteristics of a population, variations in a parameter at a sampling point, or an environmental condition that they are intended to represent.

Typically, representative data will be obtained through careful selection of sampling locations and analytical parameters; proper collection and handling of samples; and through use and consistent application of established field and laboratory procedures. Evaluation of field and laboratory blank samples for presence of contaminants can be useful in evaluating representativeness of sample results.

Completeness: A measure of the percentage of project-specific data that is valid.

Valid data are obtained when samples are collected and analyzed in accordance with quality control (QC) procedures outlined in the sampling and analysis plan (SAP), and when none of the QC criteria that affect data usability are exceeded. Once data validation is complete, the number of usable sample results is divided by the total number of sample results planned for the investigation to determine the percent completeness. A completeness goal should be developed for each project (i.e., 100% completeness for residential samples to ensure that all properties requiring sampling are sampled). A discussion of completeness must also examine the number of samples called for in the SAP compared to the number of samples actually collected. Variance between the planned and collected sample numbers should be explained.

Comparability: Expression of the confidence with which one data set can be compared with another.

Comparability of data is achieved by consistently following standard field and laboratory procedures and by using standard measurement units in reporting analytical data.

For complete information regarding data validation, please see the EPA National Functional Guidelines at http://www2.epa.gov/clp/contract-laboratory-program-national-functional-guidelines-data-review

Determination of Data Usability Qualifiers

Determination of Data Usability Q	<u> </u>		
Step 1: Review QC Parameter and Document Finding	Step 2: Determine Which Samples to Qualify	Step 3: Determine Which Results to Qualify	Step 4: Apply Qualifier and Bias Code
Lab Receipt of Samples			
Preservative (including sample temperature) outside of specifications.	Affected samples and professional judgment	Detected Results Non-detected Results	J- UJ or R
Samples not accounted for on Chain-of- Custody	Affected samples	All samples	R
Samples analyzed outside of method specified or technical holding time.	Affected samples	Detected Results Non-detected Results	J- R (UJ for SVOC, pesticides, aroclors)
Samples analyzed grossly outside of method specified or technical holding time.	Affected samples	Detected Results Non-detected Results	J- R
Lab Quality Control			
Calibration verification results outside of acceptable limits.	Samples associated with initial and/or continuing calibration verification	Detected Results Non-detected Results	UJ UJ
Analyte detected in Method Blank (MB) at concentration less than Contract Required Quantitation Limit (CRQL) ¹ (i.e., J-flag)	Samples in preparation batch	Detected Results <=CRQL Detected Results >CRQL	U J (use professional judgment)
Analyte detected in Method Blank (MB) at concentration greater than or equal to CRQL	Samples in preparation batch	Detected Results < Blank Concentration Detected Results >= Blank Concentration	U Use professional judgment
Matrix Spike:		1	
%Recovery above specifications	Sample and professional judgment for samples in preparation batch from same matrix.	Detected Results Non-detected Results	J+ No qualifier
%Recovery below specifications and greater than 20% (30% for inorganics)	Sample and professional judgment for samples in preparation batch from same matrix.	Detected Results Non-detected Results	J- UJ

Step 1: Review QC Parameter and Document Finding	Step 2: Determine Which Samples to Qualify	Step 3: Determine Which Results to Qualify	Step 4: Apply Qualifier and Bias Code
%Recovery below 20% (30% for inorganics)	Sample and professional judgment for samples in preparation batch from same matrix.	Detected Results Non-detected Results	J- R
Note: If the spiking amount is less than four tine effect. Professional judgment should be use in			may not represent the matrix
Laboratory Control Sample:			
%Recovery above specifications	Samples in preparation batch.	Detected Results Non-detected Results	J+ No qualifier
%Recovery below specifications and greater than 20% (40% for inorganics; see NFG for pesticides and Aroclors; 10% for dioxins)	Samples in preparation batch.	Detected Results Non-detected Results	J- UJ
%Recovery below 20% (40% for inorganics; see NFG for pesticides and Aroclors; 10% for dioxins)	Samples in preparation batch.	Detected Results Non-detected Results	J- R
Laboratory Duplicate Samples (including LCSI	and MSD):	1	
Relative Percent Difference outside specifications	Samples in preparation batch.	Detected Results	J
Surrogate Recoveries:			<u> </u>
Surrogate Recovery greater than Upper Acceptance Limit	Target analytes in sample	Detected Results Non-detected Results	J+ No qualification (UJ for dioxins)
Surrogate Recovery less than Lower Acceptance Limit and greater than 10%	Target analytes in sample	Detected Results Non-detected Results	J- UJ
Surrogate Recovery less than 10%	Target analytes in sample	Detected Results Non-detected Results	J- R (see NFG for dioxins)
Field QC Samples		•	•
Blanks			
Analyte detected in Field Blank, Equipment Blank, and/or Trip Blank at concentration less than Contract Required Quantitation Limit (CRQL)1 (i.e., J-flag)	Associated samples	Detected Results < CRQL Detected Results >= CRQL	U Use professional judgment
Analyte detected in Field Blank, Equipment Blank, and/or Trip Blank at concentration greater than or equal to CRQL	Associated samples	Detected Results < Blank Concentration Detected Results >= Blank Concentration	U Use professional judgment
Duplicates	•	•	•
Field Duplicate Relative Percent Difference outside specifications and analyte concentration >=5x CRQL	Associated samples	Detected Results	J

Step 1: Review QC Parameter and Document Finding	Step 2: Determine Which Samples to Qualify	Step 3: Determine Which Results to Qualify	Step 4: Apply Qualifier and Bias Code	
Field Duplicate Relative Percent Difference outside specifications and analyte concentrations <5x CRQL with absolute difference between sample and duplicate > CRQL	Associated samples	Detected Results Non-detected Results	J UJ	
Field Duplicate Relative Percent Difference outside specifications and analyte concentrations <5x CRQL with absolute difference between sample and duplicate <= CRQL	Associated samples	Detected Results Non-detected Results	No qualification No qualification	
Consultant/Validator Questions				
Reported Units not appropriate for sample matrix	Affected samples	All results	Inquire, document, and use professional judgment	
Analytical methods do not comply with project requirements. And/Or Detection Limits not appropriate for the project.	Affected samples	Detected Results Non-detected Results	Use professional judgment Use professional judgment, if Reporting Limits > Screening Levels; results may not be usable	
QC Sample Frequency	•			
Method Blanks analyzed less than 5% of total samples	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	
Matrix Spike samples analyzed less than 5% of total samples	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	
Laboratory Control Samples analyzed less than 5% of total samples	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	
Field, equipment, or trip blanks analyzed less than required	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	

Notes:

- 1. See the National Functional Guidelines (NFG) for contract required quantitation limit (CRQL) or blank results of common laboratory contaminants, including: methylene chloride, acetone, and 2-butanone.
- 2. Screening Levels (SLs) is a generic term which may include Risk Based Screening Levels, Regional Screening Levels, and/or site specific screening levels.

Montana DEQ - Waste Management and Remediation Division Data Validation Summary Form (Version 1.3.0, Revised 1/26/18)

Please fill out the information below, using one form for each lab batch (one form can be used for multiple analytical methods). The form will grow and adjust, based on your responses. Please include a discussion regarding the sampling event in the report that is sent to DEQ with this form. For additional instructions, please click the Open Complete Instructions button.

Basic Questions View example (Note: example optimized for viewing in Chrome browser) 1. Site/Facility name Samaritan House 2. Site code or facility ID (if applicable) 3. Release ID (if applicable) 4. Sample delivery H22100108 group 5. Name of DEQ-Sampling & Analysis Plan - Phase II Environmental Site Assessment and Building approved sampling Materials Inspection - Samaritan House Property, Kalispell, Montana plan 6. Date DEQ 9/8/2022 M/D/YY approved the sampling plan 7. Name of data Jordan Westenberg validator 8. Phone 406-360-0220 Date validated M/D/YY **Field Collection Questions** <u>View example</u> (Note: example optimized for viewing in Chrome browser) 10. Sample matrix ⊠ Soil Sediment ☐ Surface water ☐ Groundwater Air (including soil gas) ☐ Tap water rinsate sample from decontamination of sampling equipment 11. Sample collection M/D/YY 10/5/2022 start date 12. Sample collection M/D/YY 10/5/2022 end date 13. Analytical Add Method Analytical Method(s) methods used Use Add Method Delete Method EPA Method 200.x: Metals (also known as 200-series metals) button to list multiple methods. Enter any Delete Method EPA Method 8260 (SW-846): VOCs by GC/MS other methods in the field manually. Delete Method Method MT-EPH: Extractable Petroleum Hydrocarbons Delete Method Method MT-VPH: Volatile Petorleum Hydrocarbons **Laboratory-related Questions** View example (Note: example optimized for viewing in Chrome browser) 14. Laboratory name Energy Laboratories, Helena, MT & Billings, MT and location 15. Laboratory project Samaritan House Ph II ID 16. Were samples received in good condition and at Yes No See Below Comments appropriate temperature, chainof-custody forms complete, and all samples analyzed within holding times?

17. Were all laboratory quality							
control procedures complied with and is data validated without	Yes	No	See Below	Comments			
qualifiers?							
Please explain							
17a. Were all calibration	Yes	No		Comments			
verification results within	\bigcirc			ntinuing Calibration Verification Standard run			
acceptable limits?				I SW8260B), Lab ID=11-Oct-22_CCV_24 had one			
				Methyl ethyl ketone, flagged by the lab with an "S" for exceeding the percent recovery high limit. (UJ)			
			If no, explai				
One Continuing Calibration Verif	ication S	Standaı	•	nod SW8260B), Lab ID=11-Oct-22_CCV_24 had			
one analyte (Methyl ethyl ketone (UJ)			an "S" quali	fier for exceeding the percent recovery high limit.			
17b. Were laboratory (method)	Yes	No		Comments			
blank samples free of				MB-63895-63743 for C11 to C22 Aromatics d 0.608 mg/kg of Benzo(a)Pyrene. (U)			
contamination?			If no, expl				
One Method Blank run (for Methologia) Benzo(a) Pyrene. (U)	od MA_I	EPH), I		8-63895-63743 exhibited 0.608 mg/kg of			
17c. Are the percent recoveries							
and relative percent differences of	Yes	No		Comments			
matrix spike and matrix spike duplicates within quality control				H22100037-002AMSD SAMPLE MATRIX SPIKE CATE FOR C11 TO C22 AROMATICS. RPD			
limits?				DED RPD LIMIT FOR PHENANTHRENE,			
				ACENE, BENZO(A)ANTHRACENE, CHRYSENE,			
				ENZO(A)PYRENE. LAB QUALIFIED WITH AN "R".			
			LAB ID	H22100108-008CMS SAMPLE MATRIX SPIKE			
				CATE FOR VPH. %RECOVERY BELOW LOW			
				OR MTBE, BENZENE, TOLUENE,			
				BENZENE, XYLENE, NAPHTHALENE, TPH. LAB TED WITH AN "S".			
			IARID	H22100108-008CMS SAMPLE MATRIX SPIKE			
				ATE FOR VPH. RPD EXCEEDED RPD LIMIT FOR			
				BENZENE, TOLUENE, ETHYLBENZENE,			
			XYLENI AN "R".	E, NAPHTHALENE, TPH. LAB QUALIFIED WITH			
				H22100108-008DMS Sample Matrix Spike (Method			
				OB) had five analytes; trans-1, 3-Dichloropropene;			
				ert-butyl ether (MTBE); 1,1,2,2-Tetrachloroethane; ichloroethane; and 1,2,3-Trichloropropane, flagged			
				"S" qualifier for exceeding percent recovery high			
			Duplica ^d Bromon	H22100108-008DMSD Sample Matrix Spike te (Method SW8260B) had two analytes; nethane; and 1,1,2,2-Tetrachloroethane, flagged			
			with an limits.	"S" qualifier for exceeding percent recovery high			

Lab ID=H22100108-001AMS Sample Matrix Spike (Method SW6020) had one analyte, Barium, flagged with an "SE" qualifier for exceeding the percent recovery high limit.

Lab ID=H22100108-001AMSD Sample Matrix Spike Duplicate (Method SW6020) had one analyte, Barium, flagged with an "SE" qualifier for exceeding the percent recovery high limit.

Lab ID=H22100108-008CMSD Sample Matrix Spike Duplicate (Method MA-VPH) had eight analytes; Methyl tertbutyl ether (MTBE); Benzene; Toluene; Ethylbenzene; m+p-Xylenes; o-Xylene; Napthalene; Total Purgeable Hydrocarbons, flagged with an "R" qualifier for exceeding relative percent differences limit.

If no, explain

LAB ID H22100037-002AMSD SAMPLE MATRIX SPIKE DUPLICATE FOR C11 TO C22 AROMATICS. RPD EXCEEDED RPD LIMIT FOR PHENANTHRENE, ANTHRACENE, BENZO(A)ANTHRACENE, CHRYSENE, AND BENZO(A)PYRENE. LAB QUALIFIED WITH AN "R". (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

LAB ID H22100108-008CMS SAMPLE MATRIX SPIKE DUPLICATE FOR VPH. %RECOVERY BELOW LOW LIMIT FOR MTBE, BENZENE, TOLUENE, ETHYLBENZENE, XYLENE, NAPHTHALENE, TPH. LAB QUALIFIED WITH AN "S". (UJ - Analyte not detected above CRQL, but CRQL may be inaccurate - NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

LAB ID H22100108-008CMS SAMPLE MATRIX SPIKE DUPLICATE FOR VPH. RPD EXCEEDED RPD LIMIT FOR MTBE, BENZENE, TOLUENE, ETHYLBENZENE, XYLENE, NAPHTHALENE, TPH. LAB QUALIFIED WITH AN "R". (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

Lab ID=H22100108-008DMS Sample Matrix Spike (Method SW8260B) had five analytes; trans-1, 3-Dichloropropene; Methyl tert-butyl ether (MTBE); 1,1,2,2-Tetrachloroethane; 1,1,2-Trichloroethane; and 1,2,3-Trichloropropane, flagged with an "S" qualifier for exceeding percent recovery high limits. (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

Lab ID=H22100108-008DMSD Sample Matrix Spike Duplicate (Method SW8260B) had two analytes; Bromomethane; and 1,1,2,2-Tetrachloroethane, flagged with an "S" qualifier for exceeding percent recovery high limits. (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

LAB ID H22100037-002AMSD SAMPLE MATRIX SPIKE DUPLICATE FOR C11 TO C22 AROMATICS. RPD EXCEEDED RPD LIMIT FOR PHENANTHRENE, ANTHRACENE, BENZO(A)ANTHRACENE, CHRYSENE, AND BENZO(A)PYRENE. LAB QUALIFIED WITH AN "R". (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

LAB ID H22100108-008CMS SAMPLE MATRIX SPIKE DUPLICATE FOR VPH. %RECOVERY BELOW LOW LIMIT FOR MTBE, BENZENE, TOLUENE, ETHYLBENZENE, XYLENE, NAPHTHALENE, TPH. LAB QUALIFIED WITH AN "S". (UJ - Analyte not detected above CRQL, but CRQL may be inaccurate - NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

LAB ID H22100108-008CMS SAMPLE MATRIX SPIKE DUPLICATE FOR VPH. RPD EXCEEDED RPD LIMIT FOR MTBE, BENZENE, TOLUENE, ETHYLBENZENE, XYLENE, NAPHTHALENE, TPH. LAB QUALIFIED WITH AN "R". (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED)

Lab ID=H22100108-008DMS Sample Matrix Spike (Method SW8260B) had five analytes; trans-1, 3-

Dichloropropene; Methyl tert-butyl ether (MTBE); 1,1,2,2-Tetrachloroethane; 1,1,2-Trichloroethane; and 1,2,3-Trichloropropane, flagged with an "S" qualifier for exceeding percent recovery high limits. (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED) Lab ID=H22100108-008DMSD Sample Matrix Spike Duplicate (Method SW8260B) had two analytes; Bromomethane; and 1,1,2,2-Tetrachloroethane, flagged with an "S" qualifier for exceeding percent recovery high limits. (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED) Lab ID=H22100108-001AMS Sample Matrix Spike (Method SW6020) had one analyte, Barium, flagged with an "SE" qualifier for exceeding the percent recovery high limit. (UJ - Analyte not detected above CRQL, but CRQL may be inaccurate - NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED) Lab ID=H22100108-001AMSD Sample Matrix Spike Duplicate (Method SW6020) had one analyte, Barium, flagged with an "SE" qualifier for exceeding the percent recovery high limit. (UJ - Analyte not detected above CRQL, but CRQL may be inaccurate - NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED) Lab ID=H22100108-008CMSD Sample Matrix Spike Duplicate (Method MA-VPH) had eight analytes; Methyl tert-butyl ether (MTBE); Benzene; Toluene; Ethylbenzene; m+p-Xylenes; o-Xylene; Napthalene; Total Purgeable Hydrocarbons, flagged with an "R" qualifier for exceeding relative percent differences limit. (NO QUALIFIERS BECAUSE ANALYTE WAS NOT DETECTED) 17d. Are the laboratory control Yes Nο Comments samples the same matrix as the samples and prepared the same as associated samples? 17e. Were laboratory control samples and laboratory control Yes No Comments sample duplicate percent Lab ID=04-Oct-22 LCS 5 Laboratory Control Sample recoveries and relative percent (Method SW8260B) had one analyte, Bromomethane, differences within laboratory flagged with an "S" qualifier for exceeding the percent control limits? recovery high limit. (J+) If no, explain Lab ID=04-Oct-22 LCS 5 Laboratory Control Sample (Method SW8260B) had one analyte, bromomethane, flagged with an "S" qualifier for exceeding the percent recovery high limit. (J+) Yes No Comments 17f. Were surrogate recoveries Lab=ID H22100108-008CMS Sample Matrix Spike (Method within laboratory quality control MA-VPH) had two analytes; VPH Aromatics Surrogate; limits? VPH Aliphatics Surrogate, flagged with an "S" for recoveries falling below the percent recovery low limit. (J-) Lab=ID MB-63691 Method Blank (Method 8260B) had three analytes; 1,2-Dichloroethane-d4; Bibromofluoromethane; p-Bromofluorobenzene, flagged for surrogate recoveries exceeding the percent recovery high limit. (J+)

If no, explain. Note: If surrogate sampling was conducted on samples not related to the project, please explain that here.

Lab=ID H22100108-008CMS Sample Matrix Spike (Method MA-VPH) had two analytes; VPH Aromatics Surrogate; VPH Aliphatics Surrogate, flagged with an "S" for recoveries falling below the percent recovery low limit. (J-)

Lab=ID MB-63691 Method Blank (Method 8260B) had three analytes; 1,2-Dichloroethane-d4; Bibromofluoromethane; p-Bromofluorobenzene, flagged for surrogate recoveries exceeding the percent recovery high limit. (J+)

17g. Were the la	aboratory duplicate	Yes	No		Comments
	differences within				
data validation of limits?	quality control				
	tal number of lab	Yes	No		Comments
	at least 5% of the				
total number of					
required by the					
	tal number of lab mples prepared at	Yes	No		Comments
least 5% of the					
samples, or as					
method?					
20. Please list a	ny project samples	used fo	or matrix spil	ke/matrix spik	se duplicates.
Add Sample	Lab ID		Field Sa	ample ID	Comments
Delete Sample	H22100108-001A	MS	220512	2-SB1-1	
Delete Sample	H22100108-001A	MSD	220512	2-SB1-1	
Delete Sample	H22100108-005A	MS	220512	2-SB3-1	
Delete Sample	H22100108-005A	MSD	220512	2-SB3-1	
Delete Sample	H22100108-0080	MS	22051	2-SW1	
Delete Sample	H22100108-008C	MSD	220512-SW1		
Delete Sample	H22100108-008E	MS	220512-SW1		
	H22100108-008D	MSD	220512-SW1		
Delete Sample	H22100108-008A	MS3	220512-SW1		
Delete Sample	H22100108-008A	MSD	22051	2-SW1	
21. Is the total n		Yes	No		Comments
laboratory contr 5% of the total r	ol samples at least				
samples?	lumber of				
Consultant/Valid	ator Questions	Vie	w example (r	Note: example o	otimized for viewing in Chrome browser)
22. Are the dete	ection limits	Yes	No		Comments
	he project (i.e. at				
or below screen 23. Are the repo	ing levels)?				
	the sample matrix	Yes	No		Comments
	ts in ug/L, not mg/				
kg)?					
24. Do the analy		Yes	No		Comments
	ject requirements				
(e.g. in the SAP QAPP)?	, work plan, or				
25. Do the labor	ratory reports	.,			
	tituents requested	Yes	No		Comments
to be analyzed					
custody or unde					
plan or other ap document?	plicable				
26. Is the number	er of sample				
blanks (e.g. equ	•	Yes	No		Comments
field blanks) equ	ual to at least 10%				
	ber of samples, or				
as otherwise red	quired?				

07 And Sold bl									
27. Are field blacontamination,		om							
collected as re		field	Yes	No	See Bel	ow_	Comment	is	
duplicate perce									
within data vali	idation quali	ty							
control limits?	vide an Exc	el or CSV	file to t	the DEO	nroiect m	anager (via e-i	mail or CD) that list	ts all samples	
evaluated in th						anager (via e i	man or obj that not	.5 dii 5diripie5	
Please use the			, ,						
							Comments (indi	icate whether th	e issue
Lab	ID	Field	Sample	e ID	Qι	alifiers	,	results high or lo	
Evample 49	Example 48310-2.31E								
						K	Sample dropped		Joverable
Example 48			nple GV						
					e EPA's N	ational Functio	nal Guidelines for	more informatio	n on
qualifiers for	Qualifier		as dio	XINS.		Explanatio	2		ı
	C			Postici	de and Ar		confirmed with GC/	MS	ı
				ı cəlici		ed value, may b		1010	ı
	J			Δnal			ntration is estimated		ı
				Alial		d value, may b		_	ı
_	NJ					ively identified			ı
<u> </u>	R					ample result re			ı
<u> </u>	U		Δn	alvte ana			ed above quantitati	ion limit	ı
<u> </u>	UJ						ut CRQL may be in		ı
	X	P		<u> </u>			using GC/MS, but		ı
If you wish to						e use the table		anodocociai	
ii you iiioii te	inanaany o	ntor quan	1100 001		ano, prode			P (1 ()	
Add Sample	Lal	D ID	F	ield San	nple ID	Qualifiers	,	ndicate whether ne results high o	
Delete Sample	H22100	108-001	2	220512-	SB1-1	J	I EH Identifi	ied, but concent estimated	ration is
Dalata Carrala	1100400	400.000		200540	004.0		TEH identif	ied, but concent	ration is
Delete Sample	H22100	108-002		220512-	SB1-2	J		estimated	
Delete Sample	H22100	108-008		220512	-SW1	J		lentified, but con	centration
								is estimated	
29. What is the			400				Comment	:S	
completeness versus valid sa			100						
30. Was the co	•		Yes	No			Comment	 S	
met?		300							
31. Does all da	ata conform t	0	Yes	No			Comment	s	
analytical meth									
quality objectiv	es specified	for this							
project?									
32. Other gene	eral commen	ts or obse	ervation	ns?					
Split Samples	plit Samples								
33. Did DEQ co	ollect solit sa	mnles?	Yes	No			Comment	s	
Jo. Did DEQ 0					DEQ	did not obtair	split samples.		
Print Form		Sa	ave As				Open Instructions	Hide	Instructions
Open instructions of the contractions of the contraction of the c									

Montana Department of Environmental Quality Data Validation Guidelines for Evaluating Analytical Data (updated January 26, 2018)

This document was assembled by the Montana Department of Environmental Quality Contaminated Site Cleanup Bureau (DEQ) to formalize technical direction for conducting data validation. Data validation is a standardized review process for judging the analytical quality and usefulness of a discrete set of chemical data and is necessary to ensure that data of known and documented quality are used in making environmental decisions.

While these guidelines are generally used by DEQ, there may be circumstances that warrant a higher level of data validation review and DEQ reserves the right to require additional validation. For investigations where x-ray fluorescence (XRF) or other field screening equipment is used, provide an evaluation including the comparison and correlation of field screening data to laboratory confirmation data in the data validation discussion (please see DEQ's frequently asked questions at http://deq.mt.gov/Land/StateSuperfund/FrequentlyAskedQuestions for specifics associated with the use of XRF equipment and data collection/evaluation).

Please complete a separate data validation report for each sample batch as determined by the laboratory (Note: large data collection events may result in multiple batches). A brief summary of this validation report and the acceptability and usability of the data should be included in the text of the project report with the validation report included as an appendix. The data validation should include an assessment of data using the precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters:

<u>Precision</u>: The degree of mutual agreement between individual measurements of the same property under similar conditions.

Combined field and laboratory precision is evaluated by collecting and analyzing field duplicates and then calculating the variance between the samples, typically as a relative percent difference (RPD). Laboratory analytical precision is evaluated by analyzing matrix spike/matrix spike duplicate (MS/MSD) samples and using the results to calculate an RPD.

Accuracy: The degree of agreement between an analytical measurement and a reference accepted as a true value.

The accuracy of a measurement system can be affected by errors introduced by field contamination, sample preservation, sample handling, sample preparation, and analytical techniques. Analysis of matrix spike/matrix spike duplicate (MS/MSD) samples, laboratory control spikes (LCS) or blank spikes, surrogate standards, and method blanks are typically used to calculate the percent recovery (%R) for evaluating accuracy.

Please note that some methods, such as EPH and VPH, require calibration data. For such methods, please provide and verify the calibration data

<u>Representativeness</u>: The degree to which sample data accurately and precisely represent the characteristics of a population, variations in a parameter at a sampling point, or an environmental condition that they are intended to represent.

Typically, representative data will be obtained through careful selection of sampling locations and analytical parameters; proper collection and handling of samples; and through use and consistent application of established field and laboratory procedures. Evaluation of field and laboratory blank samples for presence of contaminants can be useful in evaluating representativeness of sample results.

Completeness: A measure of the percentage of project-specific data that is valid.

Valid data are obtained when samples are collected and analyzed in accordance with quality control (QC) procedures outlined in the sampling and analysis plan (SAP), and when none of the QC criteria that affect data usability are exceeded. Once data validation is complete, the number of usable sample results is divided by the total number of sample results planned for the investigation to determine the percent completeness. A completeness goal should be developed for each project (i.e., 100% completeness for residential samples to ensure that all properties requiring sampling are sampled). A

discussion of completeness must also examine the number of samples called for in the SAP compared to the number of samples actually collected. Variance between the planned and collected sample numbers should be explained.

Comparability: Expression of the confidence with which one data set can be compared with another.

Comparability of data is achieved by consistently following standard field and laboratory procedures and by using standard measurement units in reporting analytical data.

For complete information regarding data validation, please see the EPA National Functional Guidelines at http://www2.epa.gov/clp/contract-laboratory-program-national-functional-guidelines-data-review

Determination of Data Usability Qualifiers

Step 1: Review QC Parameter and Document Finding	<u> </u>	Step 3: Determine Which Results to Qualify	Step 4: Apply Qualifier and Bias Code
Lab Receipt of Samples			
Preservative (including sample temperature) outside of specifications.	Affected samples and professional judgment	Detected Results Non-detected Results	J- UJ or R
Samples not accounted for on Chain-of- Custody	Affected samples	All samples	R
Samples analyzed outside of method specified or technical holding time.	Affected samples	Detected Results Non-detected Results	J- R (UJ for SVOC, pesticides, aroclors)
Samples analyzed grossly outside of method specified or technical holding time.	Affected samples	Detected Results Non-detected Results	J- R
Lab Quality Control			•
Calibration verification results outside of acceptable limits.	Samples associated with initial and/or continuing calibration verification	Detected Results Non-detected Results	J UJ
Analyte detected in Method Blank (MB) at concentration less than Contract Required Quantitation Limit (CRQL) ¹ (i.e., J-flag)	Samples in preparation batch	Detected Results <=CRQL Detected Results >CRQL	U J (use professional judgment)
Analyte detected in Method Blank (MB) at concentration greater than or equal to CRQL	Samples in preparation batch	Detected Results < Blank Concentration Detected Results >= Blank Concentration	U Use professional judgment
Matrix Spike:	<u> </u>		
%Recovery above specifications	Sample and professional judgment for samples in preparation batch from same matrix.	Detected Results Non-detected Results	J+ No qualifier
%Recovery below specifications and greater than 20% (30% for inorganics)	Sample and professional judgment for samples in preparation batch from same matrix.	Detected Results Non-detected Results	J- UJ

Step 1: Review QC Parameter and Document Finding	Step 2: Determine Which Samples to Qualify	Step 3: Determine Which Results to Qualify	Step 4: Apply Qualifier and Bias Code
%Recovery below 20% (30% for inorganics)	Sample and professional judgment for samples in preparation batch from same matrix.	Detected Results Non-detected Results	J- R
Note: If the spiking amount is less than four tine effect. Professional judgment should be use in			may not represent the matrix
Laboratory Control Sample:			
%Recovery above specifications	Samples in preparation batch.	Detected Results Non-detected Results	J+ No qualifier
%Recovery below specifications and greater than 20% (40% for inorganics; see NFG for pesticides and Aroclors; 10% for dioxins)	Samples in preparation batch.	Detected Results Non-detected Results	J- UJ
%Recovery below 20% (40% for inorganics; see NFG for pesticides and Aroclors; 10% for dioxins)	Samples in preparation batch.	Detected Results Non-detected Results	J- R
Laboratory Duplicate Samples (including LCSI	and MSD):	1	
Relative Percent Difference outside specifications	Samples in preparation batch.	Detected Results	J
Surrogate Recoveries:			<u> </u>
Surrogate Recovery greater than Upper Acceptance Limit	Target analytes in sample	Detected Results Non-detected Results	J+ No qualification (UJ for dioxins)
Surrogate Recovery less than Lower Acceptance Limit and greater than 10%	Target analytes in sample	Detected Results Non-detected Results	J- UJ
Surrogate Recovery less than 10%	Target analytes in sample	Detected Results Non-detected Results	J- R (see NFG for dioxins)
Field QC Samples		•	•
Blanks			
Analyte detected in Field Blank, Equipment Blank, and/or Trip Blank at concentration less than Contract Required Quantitation Limit (CRQL)1 (i.e., J-flag)	Associated samples	Detected Results < CRQL Detected Results >= CRQL	U Use professional judgment
Analyte detected in Field Blank, Equipment Blank, and/or Trip Blank at concentration greater than or equal to CRQL	Associated samples	Detected Results < Blank Concentration Detected Results >= Blank Concentration	U Use professional judgment
Duplicates	•	•	•
Field Duplicate Relative Percent Difference outside specifications and analyte concentration >=5x CRQL	Associated samples	Detected Results	J

Step 1: Review QC Parameter and Document Finding	Step 2: Determine Which Samples to Qualify	Step 3: Determine Which Results to Qualify	Step 4: Apply Qualifier and Bias Code	
Field Duplicate Relative Percent Difference outside specifications and analyte concentrations <5x CRQL with absolute difference between sample and duplicate > CRQL	Associated samples	Detected Results Non-detected Results	J UJ	
Field Duplicate Relative Percent Difference outside specifications and analyte concentrations <5x CRQL with absolute difference between sample and duplicate <= CRQL	Associated samples	Detected Results Non-detected Results	No qualification No qualification	
Consultant/Validator Questions				
Reported Units not appropriate for sample matrix	Affected samples	All results	Inquire, document, and use professional judgment	
Analytical methods do not comply with project requirements. And/Or Detection Limits not appropriate for the project.	Affected samples	Detected Results Non-detected Results	Use professional judgment, if Reporting Limits > Screening Levels; results may not be usable	
QC Sample Frequency	I			
Method Blanks analyzed less than 5% of total samples	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	
Matrix Spike samples analyzed less than 5% of total samples	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	
Laboratory Control Samples analyzed less than 5% of total samples	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	
Field, equipment, or trip blanks analyzed less than required	Use professional judgment	Use professional judgment	Inquire, document, and use professional judgment	

Notes:

- 1. See the National Functional Guidelines (NFG) for contract required quantitation limit (CRQL) or blank results of common laboratory contaminants, including: methylene chloride, acetone, and 2-butanone.
- 2. Screening Levels (SLs) is a generic term which may include Risk Based Screening Levels, Regional Screening Levels, and/or site specific screening levels.